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Abstract. Body movement and embodied knowledge play an impor-
tant part in how we express and understand music. The gestures of a
musician playing an instrument are part of a shared knowledge that con-
tributes to musical expressivity by building expectations and influencing
perception. In this study, we investigate the extent in which the move-
ment vocabulary of violin performance is part of the embodied knowl-
edge of individuals with no experience in playing the instrument. We
asked people who cannot play the violin to mime a performance along
an audio excerpt recorded by an expert. They do so by using a silent
violin, specifically modified to be more accessible to neophytes. Prelimi-
nary motion data analyses suggest that, despite the individuality of each
performance, there is a certain consistency among participants in terms
of overall rhythmic resonance with the music and movement in response
to melodic phrasing. Individualities and commonalities are then analysed
using Functional Principal Component Analysis.

Keywords: Movement, gesture, body motion, motion capture, violin,
musical instrument, performance, motion analysis, Periodic Quantity of
Motion.

1 Introduction

The study of embodiment, body movement and gestures in music has recently
become an established field of study. Several theoretical accounts have been
put forward through the years [16, 20, 18, 17], often accompanied by empirical
analysis of body movements of people performing, listening or dancing to music.
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of Oslo, Norway, for their hospitality and knowledgeable support. Special thanks to
all the participants of the study. This study was partially realised under the FWO-
project “Foundations of expressive timing control in music”.
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As pointed out in [26], musical instruments have a a repertoire of sound-
producing gestures that contribute to build the ecological knowledge associated
to that instrument. Hence, this shared knowledge affects one’s musical experi-
ence, by creating expectations and guiding musical understanding. In fact, by
adopting an ecological approach, musical perception is seen as an active ex-
perience influenced by a highly-structured environment rather than a passive,
disembodied phenomenon. From this perspective “exposure to the environment
shape perceptual capacities of an individual” and “perception and actions are
inextricably bound together” [8].

The goal of the present study is to empirically explore the shared knowledge
of the gestural repertoire of a well-known musical instrument among people that
have no previous experience in playing that particular instrument. This is done
by analysing the motion data gathered during an experiment where neophytes
are asked to mime a violin performance. The analysis focuses on several body
parts and movement features, in relation to the music and in comparison to the
actual performance of an experienced violinist.

This experiment draws its motivation from the assumption that the musi-
cian encodes gestures in sound and the listener can decode particular aspects
of them through corporeal imitation. As Leman notes, the listener is capable
of grasping music as intended moving form and perception and understanding
of musical expressiveness is based on corporeal resonance behaviour: “Obviously
the movements of the listener are not [...] the same as the movements of the
player. What is more or less the same [...] is the motor system that encodes and
decodes sonic forms.” [20]. Therefore, a more detailed analysis of the extent of
the gestural vocabulary of an instrument also among non-experts can contribute
to the understanding of musical perception and expression.

A relevant aspect of the design of this experiment is the use of an actual
violin, specifically modified to not emit any sound when bowed and to be more
accessible to people that have never used one before. Previous studies have anal-
ysed so-called “air performances” of experts and beginners mimicking the use
of various instruments [15, 10]. Here, the choice of using an actual instrument
is motivated by the adoption of an ecological approach, assuming that the re-
lationship with the object (indeed part of the aforementioned environment [8])
and its affordances [13, 12] may have a significant impact on the movements of
the subjects. In addition, experience using tools has also been the subject of
embodied music cognition research [21] and the concept of affordance has seen
renewed interest in multidisciplinary music research [23, 1].

The analysis of the motion data gathered during the experiment focuses
prevalently on intermediate and high-level movement descriptors. This is moti-
vated by ecological perceptual theories suggesting that, when processing infor-
mation, people seem to be aware of high-level features more directly than lower-
level features [8]. Therefore, we expect high-level movement features to be more
readily identified and shared by the participants. Moreover, body movement
and entrainment in response to music are complex and dynamic phenomenons.
Therefore, movement analysis should try to address complex patterns from mul-
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tidimensional motion data, rather than single values that capture a particular
feature of a movement segment. Amelynck et al. [2] proposed a new method
that avoids this segmentation and takes into account the complete movement
dynamics. They analysed the spontaneous bodily responses of people to a mu-
sical stimulus and tried to model expressiveness in terms of commonalities and
individualities using Functional Principal Component Analysis (FPCA) [25].

2 The Experiment: Material and Methods

2.1 Participants

A total of thirteen participants took part in the study. This includes twelve neo-
phytes (7 male, 5 female, average age: 33.4, SD of age: 9.8) and one experienced
violinist (male, aged 23), who performed and recorded the stimuli for the exper-
iment. All participants gave their informed consent and were free to take breaks
or abandon the experiment at any point. Ethical approval was granted by the
Arts and Humanities Research Ethics Sub-committee at the Faculty of Arts and
Humanities, Plymouth University. Participants were also asked to fill out a brief
anonymous questionnaire with basic personal data and information about their
musical background.

2.2 Stimuli

Participants were asked to mime a violin performance using the modified violin
along 5 randomly-ordered musical stimuli, which consisted of brief solo violin
excerpts recorded by the experienced violinist. Stimuli were between 8.5 and 34
seconds long and were chosen to cover a variety of different styles and instru-
mental techniques.

List of Stimuli

– Antonio Vivaldi “Violin Concerto in A minor, Op 3, No 6, RV 356” (1711)

– Camille Saint-Sans “Le Carnaval des Animaux - 10. Volire” (1886)

– Kaija Saariaho, “Nocturne for solo violin” (1994)

– Niccolò Paganini “Caprice No. 1 ‘The Arpeggio’ in E major: Andante”
(1819)

– Sergei Prokofiev “Five Melodies for Violin and Piano, Op. 35bis” (1925)

This first study focuses on the data collected using the first stimulus, which
consists of the first twelve bars of the first movement (Allegro) of Vivaldi’s Violin
Concerto in A minor (Fig. 1).
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Fig. 1. Excerpt of the the violin part of Vivaldi’s Violin Concerto in A minor. The
audio recording of the first twelve bars was used as stimulus for the experiment.

2.3 Apparatus

The multimodal recordings were carried out at the Interdisciplinary Centre for
Computer Music Research (ICCMR), Plymouth University, United Kingdom
and at fourMs - Music, Mind, Motion, Machines, University of Oslo, Norway. In
Plymouth, participants’ movements were recorded using a six-camera marker-
based optical motion capture system (Natural Point Optitrack Flex 34) tracking
at a frame rate of 100 Hz. A total of 33 reflective markers were attached to
each participant and to the instrument and were located as follow5: LF head,
RF head, LB head, RB head, L shoulder, R shoulder, spine (T5), LF hip, RF
hip, LB hip, RB hip, L elbow, R elbow, L wrist (radius), L wrist (ulna), R wrist
(radius), R wrist (ulna), L knee, R knee, L ankle, R ankle, L heel, R heel, L toe,
R toe, R scapula6, violin scroll, violin L upper bout, violin R upper bout, violin
L lower bout, violin R lower bout, bow tip, bow frog (see Fig. 2).

In Plymouth, an additional marker located on the sternum of the participants
was used. However, the data associated to that marker was eventually discarded
as it contained too many dropouts due to the frequent occlusion caused by the
right arm during bowing movements. That marker was therefore not used in the
subsequent recording sessions in Oslo.

The stimuli were played back using a pair of Genelec 8020C loudspeakers
using a DAW7 sending a stereo audio signal to an audio interface which was used
to generate the SMPTE signal used for synchronising audio, video and motion
capture sources. The audio in the room was recorded by a pair of condenser
microphones placed in a XY stereo configuration as well as by a video camera
used to film the sessions.

4 http://www.optitrack.com
5 L=Left; R=Right; F=Front; B=Back. A similar configuration can be found in [4].
6 Used to obtain an asymmetrical marker set, useful for marker identification and

tracking. Not used for analysis.
7 http://www.reaper.fm
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Fig. 2. Marker locations and labels.

In Oslo, the performances were recorded using a nine-camera marker-based
optical motion capture system (Qualisys Oqus 3008) using the same frame rate
(100 Hz) and marker configuration (except for the sternum marker) used in
Plymouth. The feed from a digital video camera was recorded within the Qualisys
Track Manager software alongside the motion tracking data. The stimuli were
played back using the same model of loudspeakers and the same DAW software
while recording and playback of the various sources was synchronised using a
custom Max9 patch.

The participants were asked to simulate the performance using a modified
violin designed specifically for the experiment. This violin was fitted with a
support system that allowed the instrument to be safely strapped to the shoulder
of the participant. This was done in order to allow the participants – which in
most cases never had held a violin before – to move with more confidence without
being afraid to drop the instrument. Two thin metal plates soldered to a metal
strip that follows the profile of the bridge were mounted on the violin body above
the strings (see Fig. 3). This add-on had a dual purpose—it helped novices to
quickly overcome the initial difficulties of holding the bow in a correct standard
playing position and it prevented contact between the strings and the bow hair,
hence making the violin silent.

8 http://www.qualisys.com
9 https://cycling74.com
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Fig. 3. The modified violin used for the experiment.

2.4 Procedure

The expert violinist was recorded first. He performed all the selected excerpts,
which provided both the audio stimuli for the neophytes and video and motion
data to use as a benchmark for the analysis of the participant’s movements.

Each neophyte was recorded individually. For each stimulus, the participant
was asked to first listen to the audio once in order to familiarise with the music
and then use the modified violin to mime a performance along the played back
audio twice. Audio, video and motion data were recorded during each trial.

3 Analysis of periodicity and phrasing using Mocapgrams
and Periodic Quantity of Motion

3.1 Movement Data Preprocessing

The motion data was first preprocessed, labeled and exported to C3D files using
Optitrack Motive and Qualisys Track Manager. The C3D files were then loaded
in MATLAB using Motion Capture (MoCap) Toolbox [5].

3.2 Comparative movement data analysis using full Mocapgrams

By plotting Mocapgrams [19] (a graph in which position coordinates of each
marker are normalised and projected onto an RGB colorspace) it was possible
to do a preliminary analysis and observe recurring patterns and periodicities
in the motion data. Fig. 4 shows full Mocapgrams for the performances of the
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expert violinist and of one of the neophytes (top left and top right graphs re-
spectively). Regular colour patterns in the horizontal rows corresponding to each
marker suggest periodicity in certain parts of the body and the instrument. As an
example, the thinnest pattern can be observed in the right elbow and wrist (la-
beled ‘14 Rarm elb’ and ‘18 Rarm ulna’ respectively), which is consistent with
the pattern visible in the bow markers (‘51 bow tip’ and ‘52 bow frog’). This
shows, expectably, a certain coherence in the movement of the bow and the arm
that holds it as well as high frequency periodicity caused by the repetitive bow-
ing movements. Similarly, it is straightforward to notice that the left toe of the
expert (‘27 Lfoot toe’) changes position only three times throughout the whole
take at irregular intervals.

For the purpose of this study, Mocapgrams are useful not only to observe
general periodicity in the movement of certain parts of the body during the per-
formance. By providing an overall view of all the motion data, they also allow
to locate movements that affect the whole body, which are visualised by vertical
stripes that go across all the marker rows. The most evident perturbation in
the motion data of the expert can be clearly seen between sec. 23 and 25. The
waveform aligned to the graphs shows that this general shift coincides with the
peak the melody reaches at the beginning of bar 9, before concluding the phrase
on the minim at the end of the same bar. A similar, albeit slightly delayed10,
general perturbation in the motion data can be observed in the neophyte around
sec. 25. This is consistent with the data of the majority of the other neophytes
suggesting a general tendency to parse evident melodic phrases with overt body
movements. As it can be noticed from the full Mocapgrams, this occurs repeat-
edly during the neophyte’s performance and the same trend is visible in the data
of the other participants. This is consistent with findings in previous studies on
air-performance showing that beginners tend to move more than experts [15].

3.3 Analysis of movement periodicity using Periodic Quantity of
Motion

Another useful descriptor used for analysing movement periodicity is Periodic
Quantity of Motion (PQoM). First introduced in [27], this index gives an es-
timate of the resonance of the movement periodicity with different rhythmic
subdivisions in the music. Inspired by the widely known Quantity of Motion
(QoM) [6, 7], PQoM is a motion descriptor useful to observe how movement re-
lates to rhythmic aspects of the music. PQoM is calculated by subdividing the
magnitude vector of the 3D motion data into frequency components by using fil-
ter banks. The frequencies of the filters correspond to multiples and subdivisions
of the musical rhythm of the piece. In this case, a frequency of 1.5 Hz corresponds
approximately to a steady crotchet beat, while 0.75 Hz correspond to a minim
beat, 3 Hz to a quaver beat and 6 Hz to a semiquaver beat. The PQoM at a

10 The delay is plausibly due to the fact that the neophytes follow the audio recorded
during the expert’s performance, therefore their movements slightly lag behind the
ones of the expert.
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Fig. 4. Full Mocapgrams and Periodic Quantity of Motion (PQoM) estimates of the
bow frog and hip markers for the expert violinist (left) and one of the neophytes
(subject 7, right) aligned to the waveform of the audio. The bar numbers refer to the
score in Fig. 1.
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certain rhythmic subdivision is the magnitude of the corresponding frequency
component in the movement normalised between 0 and 1. In this study, PQoM
was estimated for four components until the end of the audio stimulus (sec. 33).
By using PQoM, it is possible to relate the motion periodicities initially observed
in the Mocapgrams to the actual rhythmic features of the musical stimulus. In
Fig. 4, PQoM graphs of the bow frog marker and one of the hip markers (labeled
52 bow frog and 09 LF hip respectively in the Mocapgram) are aligned to the
Mocapgrams. These two markers were chosen as the former is a good indicator of
the main instrumental gesture (bowing), while the latter traces ancillary move-
ments occurring in the lower half of the body during the performance. As shown
in a previous study [26], movements in this area in some cases do not resonate
evenly with the instrumental movements in the upper body. This is noticeable
here as well after a first glance at the PQoM graphs in Fig. 4. Expectably, the
bow frog PQoM of the expert is generally higher. However, expert and neophyte
seem to follow similar patterns throughout their performances, with PQoM peak-
ing around sec. 4 and 25 in the 0.75 Hz component, between sec. 6 and 16 in the
1.5 Hz component and at sec. 26 in the 3 Hz one. However, the two hip PQoM
graphs look very different from each other, sharing only a relative peak in the
1.5 Hz component around the minim that closes the phrase in bar 9. In fact,
the neophyte’s hip PQoM graph shows that entrainment is remarkably more
frequent and intense in that area than in the expert’s. Moreover, by aligning
PQoM graphs with Mocapgrams, it is possible to add further details to previous
observations. In correspondence with the end of the phrase described previously
(bar 9, sec. 23 – 25), there is a sudden shift of the PQoM index from a peak
in the minim beat frequency to a peak in the quaver beat frequency after sec.
25. This salient turning point in the melody is therefore consistently reflected in
the movement of both subjects, denoting a shared, embodied knowledge of the
expressive qualities of the music, which they express through their instrumental
gestures regardless of their expertise with the instrument.

3.4 Results

This preliminary comparative analysis of the motion data suggests that high-
level, structural features of the music are expressed through instrumental move-
ments in similar ways by the subjects, regardless of their ability to play violin.
In particular, the turning point of the melodic phrase at bar 9 seems to be some-
thing that is ‘felt’ by the subjects also in a strongly embodied way, as it impacts
the movement of the whole body and the periodicity of the instrumental move-
ments, which shifts sharply from a frequency to the other. In addition to that,
after the minim that closes the phrase there is a peak in the 3 Hz PQoM of the
expert and an even higher one in the neophyte. This may suggest that the sus-
pension created by a longer note ending a phrase creates a stronger expectation
for the following melodic part, with which the neophyte engages also through an-
cillary movements, as shown by the hip PQoM graph. In fact, all the neophytes
seem to have a more pronounced full-body periodicity. This can be hypothe-
sised by simply looking at the pink stripes in the Mocapgrams, however PQoM
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gives a much more precise estimate of the periodicity in relation to the musical
rhythm. Nearly all the neophytes seem to have a generally higher resonance with
the periodicity of the music at the hip compared to the expert, whose PQoM
is instead higher at the bow frog. This may lead to hypothesise that neophytes
tend to follow the pulse and the phrases of the music with ancillary movement
also to compensate for the lack of expressivity of their silent instrument, hence
expressing the musical content of the stimulus using their bodies.

4 Analysis of Individualities and Commonalities

Our interaction with music engages the whole body, but not all body parts show
the same behaviour [3, 26]. In this analysis, we focus on the movements of the
head and the right wrist. In fact, previous research has shown that string players
communicate expressive qualities of the music through head movements [14, 9].
In addition, we also address the movements made by the right wrist, a body
part that is directly involved in sound-producing gestures, as the bow is moved
by the right hand.

In this analysis, the performances of all the 12 neophytes, are taken in con-
sideration. Speed and acceleration were calculated from the motion data of each
subject using a Savitsky-Golay smoothing filter with a regression window of 7
frames [5] and the resulting signals were set equal to the norm of the derivatives.
Secondly, the speed and acceleration envelope was calculated using a moving
average filter of 100 frames, to make sure the beat of the music (1,5 Hz) was
covered by the window and at the same time avoid losing too much nuances
in the movement. We then compared the speed of the body movements, as this
feature is closely related to kinetic energy [11]. To check if the data was normally
distributed, a Weibull function was fitted to the distribution of the speed values
across subjects at all moments in time. The mean speed signal of the head at
each timestamp over participants was approximately normally distributed, cor-
responding to a shape parameter of the fitted Weibull distribution of 3.12±0.61
for the head and 3.04 ± 0.76 for the right wrist.

4.1 Modelling head and wrist movements

The method for the analysis of expressiveness proposed by Amelynck et al. [2]
is based on Functional Principal Component Analysis (FPCA). FPCA allows to
describe a signal as the sum of an average signal f̄(t) with a linear combination of
a set of eigenfunctions ξk(t) (commonality). Each subject can then be represented
by one score (αi) per eigenfunction (individuality):

fi(t) = f̄(t) +
K∑

k=1

αik ξk(t) . (1)

This way, the dimensionality of the problem is reduced and as much variance
as possible is covered by only a small set of eigenfunctions. According to this
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method, the set of eigenfunctions should explain at least 70% of the variance. For
our modelling, a correlation matrix based on the speed envelope of all subjects
over time C(t1, t2) is used as an input. An additional assumption for using
FPCA is that there is a relationship between values in C that are only few
samples apart. Therefore, the data is decomposed in a set of Cubic B-spline
basis functions. To determine a reliable number of basis functions, the Mean
Squared Error between model and signal was calculated. For both the head and
wrist, the number of basis functions could be set to 60. A set of eigenfunctions
could then be calculated by means of FPCA, using a least square algorithm. As
the human body show complex behaviour, Varamix rotation of the functional
principal component axes was considered to calculate a basis of eigenfunctions
that most economically represent each individual by a linear combination of only
a few basis functions. FPCA was performed using Ramsay’s FDA toolbox for
MATLAB. His approach [25] was followed throughout the procedure.

4.2 Results

To cover more than 70% of the variability of the head, we need up to three
eigenfunctions that account for 40%, 28% and 19% respectively, totalling 87%
of the variability (Fig. 5). An equal amount of eigenfunctions is needed for the
wrist as 84% of the variability is covered with 40%, 15% and 29%. This means
that, with only three eigenfunctions, we can model more than 80% of the com-
monalities in the head and wrist movements of the neophytes miming a violin
performance following the musical stimulus. The individuality of each subject
was obtained by calculating the Functional Principal Component Score for the
three eigenvalues. The individual performance can hence be modelled by three
values indicating a positive or negative score for each eigenfunction. Few indi-
vidualities were required for the model, suggesting that music was embodied in
similar ways among the subjects.

For the head, the first eigenfunction has a positive deviation from the group’s
mean for almost the entire stimulus. This means that subjects with a positive
factor on this function will perform with higher speed than the average, nearly
throughout the whole recording. In more detail, this eigenfunction reveals some-
thing about the periodic movement and phase of the head. Subjects scoring low
on this eigenfunction will have low velocity in the beginning of the bar, and
higher velocity in the middle (bars 1, 3, 4, 7, 9, 10, 11, 12), while subjects scor-
ing high will have their velocity peak in the beginning of each bar. In the middle
of bar 7, this is reversed and bar 8 and 9 have an opposite velocity profile. Note
that this is the moment where the repeated note sequences end and new musical
material starts. In the beginning of bar 6, the eigenfunction values are close to
the mean. The second eigenfunction has a major positive deviation from the
mean in bar 5,6 and 7, the second half of bar 8 and bar 9, and the last two bars.
This is complementary to the first eigenfunction. The third eigenfunction has a
major negative deviation, especially in the first 4 bars and bar 8.

The first eigenfunction of the right wrist has a major positive deviation in
bars 2-3, 6-7 and 10-12 and the second eigenfunction accounts for a positive
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offset in bars 1 and 8 in particular. Again, the third eigenfunction has a negative
deviation from the group’s mean, especially covering the variability in bars 3-6,
and 8-10. Fig. 6 shows the individualities for the head and wrist, clustered using
k-means clustering. The number of clusters was set to 5 for the head and 4 for the
wrist, after considering the optimal number with k-fold cross validation. These
three variables are the principal component scores, or weights for the eigenscores,
which represent the performance of the individual subject.

Some intervals of coherence (i.e. time intervals of equal signs) could be derived
from these results. When an eigenfunction has multiple intervals of coherence
it can be considered consistent. For the head, the first eigenfunction shows this
behaviour from the middle of bar 4 until the end of bar 5, as well as from bar
7 until the end of bar 10. The second eigenfunction covers this for bars 5-7, 9,
11 and 12. The third eigenfunction does not show long intervals of equal signs,
except for the first bar. Coherence for the right wrist movement is found in
the first eigenfunction from bars 2-4, the middle of bar 57 and bars 11-12. The
second eigenfunction reveals coherence in the first bar and from the middle of bar
7 until the end of bar 8. From bar 3 until the beginning of bar 7 and bars 8-10 are
coherent in the third eigenfunction. Thus, each eigenfunction dominates specific
time intervals in the musical structure and they are mostly complementary to
each other. The third eigenfunction of the wrist, for example, nicely reflects the
repeated notes in the music (bar 37) and the new musical material introduced
in bar 8-9 and 10. A similar effect can be seen in the second eigenfunction of
the head. The last two bars of the musical stimulus (11-12) are also represented
in two eigenfunctions (the second eigenfunction of the head and the first of the
wrist).
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5 Conclusion and Future Work

Even though low-level features of movement appear to vary considerably in some
of the subjects, there is a certain degree of consistency among participants,
especially in response to melodic and rhythmic structural features of the music.
This suggests a shared knowledge of a vocabulary of instrumental movements,
which is then combined with the idiosyncrasies of each subject. The analysis of
commonalities and individualities confirms this, and other studies [22] support
the idea that musical structure is communicated also through body movements,
and idiosyncrasies contribute to express musical meaning.

Further work will go towards studying the response of the subjects also to
the other musical stimuli recorded during the experiment. Each stimulus differs
substantially from the other, providing material for analysis of movement in
response to other musical features.

New approaches to movement analysis are in continuous development and
there is an increasing need for tools that can aid the retrieval of meaningful
features in complex, multidimensional motion data. Therefore, other approaches
– like Topological Gesture Analysis (TGA) [24] – will be tested and possibly
employed along with the methods we presented here. New techniques for motion
data analysis could get inspired by concepts suggested by theories of music per-
ception and cognition, therefore making the analysis more akin to how humans
perceive and move to music. This is indeed a challenging task since retrieving
meaningful, articulated information from motion data requires complex algo-
rithms and technologies.

The PQoM algorithm will also be refined and improved for real-time imple-
mentation. This will be useful both for online analysis and interactive music
performance (which was initially explored in [27]). In this study, PQoM was im-
plemented to analyse a musical excerpt with a steady beat throughout. Since
tempo in music often varies, the algorithm will be tested in order to be usable
with varying tempi.

Motion data analysis has provided great detail for understanding the role of
body movement in musical expression and cognition. However, it is felt that in-
tegrating quantitative data analysis with qualitative analysis and practice-based
research may broaden the scope of the research, allowing to test the assumptions
made through the analysis in musical contexts, outside of the sterile environment
of the laboratory.
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