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Abstract. Body movement and embodied knowledge play an impor-
tant part in how we express and understand music. The gestures of a
musician playing an instrument are part of a shared knowledge that con-
tributes to musical expressivity by building expectations and influencing
perception. In this study, we investigate the extent in which the move-
ment vocabulary of violin performance is part of the embodied knowl-
edge of individuals with no experience in playing the instrument. We
asked people who cannot play the violin to mime a performance along
an audio excerpt recorded by an expert. They do so by using a silent
violin, specifically modified to be more accessible to neophytes. Prelimi-
nary motion data analyses suggest that, despite the individuality of each
performance, there is a certain consistency among participants in terms
of overall rhythmic resonance with the music and movement in response
to melodic phrasing. Individualities and commonalities are then analysed
using Functional Principal Component Analysis.

Keywords: Movement, gesture, body motion, motion capture, violin,
musical instrument, performance, motion analysis, Periodic Quantity of
Motion.

1 Introduction

The study of embodiment, body movement and gestures in music has recently
become an established field of study. Several theoretical accounts have been
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put forward through the years [17, 21, 19, 18], often accompanied by empirical
analysis of body movements of people performing, listening or dancing to music.

As pointed out in [27], musical instruments have a a repertoire of sound-
producing gestures that contribute to build the ecological knowledge associated
to that instrument. Hence, this shared knowledge affects one’s musical experi-
ence, by creating expectations and guiding musical understanding. In fact, by
adopting an ecological approach, musical perception is seen as an active ex-
perience influenced by a highly-structured environment rather than a passive,
disembodied phenomenon. From this perspective “exposure to the environment
shape perceptual capacities of an individual” and “perception and actions are
inextricably bound together” [9].

The goal of the present study is to empirically explore the shared knowledge
of the gestural repertoire of a well-known musical instrument among people that
have no previous experience in playing that particular instrument. This is done
by analysing the motion data gathered during an experiment where neophytes
are asked to mime a violin performance. The analysis focuses on several body
parts and movement features, in relation to the music and in comparison to the
actual performance of an experienced violinist.

This experiment draws its motivation from the assumption that the musi-
cian encodes gestures in sound and the listener can decode particular aspects
of them through corporeal imitation. As Leman notes, the listener is capable
of grasping music as intended moving form and perception and understanding
of musical expressiveness is based on corporeal resonance behaviour: “Obviously
the movements of the listener are not [...] the same as the movements of the
player. What is more or less the same [...] is the motor system that encodes and
decodes sonic forms.” [21]. Therefore, a more detailed analysis of the extent of
the gestural vocabulary of an instrument also among non-experts can contribute
to the understanding of musical perception and expression.

A relevant aspect of the design of this experiment is the use of an actual
violin, specifically modified to not emit any sound when bowed and to be more
accessible to people that have never used one before. Previous studies have anal-
ysed so-called “air performances” of experts and beginners mimicking the use
of various instruments [16, 11]. Here, the choice of using an actual instrument
is motivated by the adoption of an ecological approach, assuming that the re-
lationship with the object (indeed part of the aforementioned environment [9])
and its affordances [14, 13] may have a significant impact on the movements of
the subjects. In addition, experience using tools has also been the subject of
embodied music cognition research [22] and the concept of affordance has seen
renewed interest in multidisciplinary music research [24, 1].

The analysis of the motion data gathered during the experiment focuses
prevalently on intermediate and high-level movement descriptors. This is moti-
vated by ecological perceptual theories suggesting that, when processing infor-
mation, people seem to be aware of high-level features more directly than lower-
level features [9]. Therefore, we expect high-level movement features to be more
readily identified and shared by the participants. Moreover, body movement



Instrumental Movements of Neophytes 3

and entrainment in response to music are complex and dynamic phenomenons.
Therefore, movement analysis should try to address complex patterns from mul-
tidimensional motion data, rather than single values that capture a particular
feature of a movement segment. Amelynck et al. [2] proposed a new method
that avoids this segmentation and takes into account the complete movement
dynamics. They analysed the spontaneous bodily responses of people to a mu-
sical stimulus and tried to model expressiveness in terms of commonalities and
individualities using Functional Principal Component Analysis (FPCA) [26].

2 The Experiment: Material and Methods

2.1 Participants

A total of thirteen participants took part in the study. This includes twelve neo-
phytes (7 male, 5 female, average age: 33.4, SD of age: 9.8) and one experienced
violinist (male, aged 23), who performed and recorded the stimuli for the exper-
iment. All participants gave their informed consent and were free to take breaks
or abandon the experiment at any point. Ethical approval was granted by the
Arts and Humanities Research Ethics Sub-committee at the Faculty of Arts and
Humanities, Plymouth University. Participants were also asked to fill out a brief
anonymous questionnaire with basic personal data and information about their
musical background.

2.2 Stimuli

Participants were asked to mime a violin performance using the modified violin
along 5 randomly-ordered musical stimuli, which consisted of brief solo violin
excerpts recorded by the experienced violinist. Stimuli were between 8.5 and 34
seconds long and were chosen to cover a variety of different styles and instru-
mental techniques.

List of Stimuli

– Antonio Vivaldi “Violin Concerto in A minor, Op 3, No 6, RV 356” (1711)
– Kaija Saariaho, “Nocturne for solo violin” (1994)
– Camille Saint-Sans “Le Carnaval des Animaux - 10. Volière” (1886)
– Niccolò Paganini “Caprice No. 1 ‘The Arpeggio’ in E major: Andante”

(1819)
– Sergei Prokofiev “Five Melodies for Violin and Piano, Op. 35bis” (1925)

This study focuses on the data collected using the first and second stimuli.
The first stimulus consists of bars 1–12 of the first movement (Allegro) of Vi-
valdi’s Violin Concerto in A minor (Fig. 1), whereas the second one includes
bars 45–48 of the Nocturne for solo violin by Kaija Saariaho (Fig. 2).
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Fig. 1. Excerpt of the violin part of Vivaldi’s Violin Concerto in A minor. The audio
recording of the first twelve bars was used as stimulus for the experiment.

Fig. 2. Excerpt of Saariaho’s Nocturne for solo violin. The audio recording of bars
45–48 was used as stimulus for the experiment.
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2.3 Apparatus

The multimodal recordings were carried out at the Interdisciplinary Centre for
Computer Music Research (ICCMR), Plymouth University, United Kingdom
and at fourMs - Music, Mind, Motion, Machines, University of Oslo, Norway. In
Plymouth, participants’ movements were recorded using a six-camera marker-
based optical motion capture system (Natural Point Optitrack Flex 34) tracking
at a frame rate of 100 Hz. A total of 33 reflective markers were attached to
each participant and to the instrument and were located as follow5: LF head,
RF head, LB head, RB head, L shoulder, R shoulder, spine (T5), LF hip, RF
hip, LB hip, RB hip, L elbow, R elbow, L wrist (radius), L wrist (ulna), R wrist
(radius), R wrist (ulna), L knee, R knee, L ankle, R ankle, L heel, R heel, L toe,
R toe, R scapula6, violin scroll, violin L upper bout, violin R upper bout, violin
L lower bout, violin R lower bout, bow tip, bow frog (see Fig. 3).

01_LF_head02_RF_head 03_LB_head 04_RB_head

05_L_torso_shoulder06_R_torso_shoulder

08_torso_spine_(T5)

09_LF_hip10_RF_hip 11_LB_hip 12_RB_hip

13_Larm_elb

29_R_scapula

15_Larm_radius

16_Larm_ulna

18_Rarm_ulna

21_L_knee22_R_knee

23_Lfoot_ankle24_Rfoot_ankle

25_Lfoot_heel 26_Rfoot_heel

27_Lfoot_toe28_Rfoot_toe

41_vln_scroll

46_vln_L_lower

47_vln_R_lower

51_bow_tip

52_bow_frog

FRONT BACK VIOLIN

BOW

22_R_knee

24_Rfoot_ankle

06_R_torso_shoulder

14_Rarm_elb

42_vln_L_upper 43_vln_R_upper

17_Rarm_radius

Fig. 3. Marker locations and labels.

In Plymouth, an additional marker located on the sternum of the participants
was used. However, the data associated to that marker was eventually discarded

4 http://www.optitrack.com
5 L=Left; R=Right; F=Front; B=Back. A similar configuration can be found in [5].
6 Used to obtain an asymmetrical marker set, useful for marker identification and

tracking. Not used for analysis.
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as it contained too many dropouts due to the frequent occlusion caused by the
right arm during bowing movements. That marker was therefore not used in
the subsequent recording sessions in Oslo. The stimuli were played back through
a pair of Genelec 8020C loudspeakers using a DAW7. The audio interface also
generated the SMPTE signal used for synchronising audio, video and motion
capture sources. The audio in the room was recorded by a pair of condenser
microphones placed in a XY stereo configuration as well as by a video camera
used to film the sessions.

In Oslo, the performances were recorded using a nine-camera marker-based
optical motion capture system (Qualisys Oqus 3008) using the same frame rate
(100 Hz) and marker configuration (except for the sternum marker) used in
Plymouth. The feed from a digital video camera was recorded within the Qualisys
Track Manager software alongside the motion tracking data. The stimuli were
played back using the same model of loudspeakers and the same DAW software
while recording and playback of the various sources was synchronised using a
custom Max9 patch.

The participants were asked to simulate the performance using a modified
violin designed specifically for the experiment. This violin was fitted with a
support system that allowed the instrument to be safely strapped to the shoulder
of the participant. This was done in order to allow the participants – which in
most cases never had held a violin before – to move with more confidence without
being afraid to drop the instrument. Two thin metal plates soldered to a metal
strip that follows the profile of the bridge were mounted on the violin body above
the strings (see Fig. 4). This add-on had a dual purpose—it helped novices to
quickly overcome the initial difficulties of holding the bow in a correct standard
playing position and it prevented contact between the strings and the bow hair,
hence making the violin silent.

2.4 Procedure

The expert violinist was recorded first. He performed all the selected excerpts,
which provided both the audio stimuli for the neophytes and video and motion
data to use as a benchmark for the analysis of the participant’s movements.

Each neophyte was recorded individually. For each stimulus, the participant
was asked to first listen to the audio once in order to familiarise with the music
and then use the modified violin to mime a performance along the played back
audio twice. Audio, video and motion data were recorded during each trial.

7 http://www.reaper.fm
8 http://www.qualisys.com
9 https://cycling74.com
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Fig. 4. The modified violin used for the experiment.

3 Analysis of periodicity and phrasing using Mocapgrams
and Periodic Quantity of Motion

3.1 Movement Data Preprocessing

The motion data was first preprocessed, labeled and exported to C3D files using
Optitrack Motive and Qualisys Track Manager. The C3D files were then loaded
in MATLAB using Motion Capture (MoCap) Toolbox [6]. The 33 markers de-
scribed above were then transformed into a set of 23 secondary markers, which
in the MoCap Toolbox framework are referred to as ‘joints’ [6, 5]. The locations
of these joints is represented in Fig. 5. Seven joints are obtained by calculating
the centroid of two or more markers: joint 1 (head) is the midpoint of the four
head markers; joint 2 (manubrium) is the midpoint of the shoulder markers,
joint 5 (left wrist) of the left ulna and radius markers, joint 8 (right wrist) of
the right ulna and radius markers, joint 9 (mid torso) of the spine and the four
hip markers, joint 10 (root) of the four hip markers, joint 11 (left hip) of the the
two left hip markers, joint 15 (right hip) of the right hip markers. On the violin,
joint 20 (violin left bout) is the midpoint of the two violin left markers whereas
joint 21 (violin right bout) is the midpoint of the two right ones. The locations
of the remaining joints (3, 4, 6, 7, 12, 13, 14, 16, 17, 18, 19, 23, 22) are identical
to the location of the respective markers (see Fig. 5).

3.2 Comparative movement data analysis using full Mocapgrams

By plotting Mocapgrams [20] (a graph in which position coordinates of each
marker are normalised and projected onto an RGB colorspace) it was possible
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Fig. 5. Joints configuration: 1=head; 2=manubrium; 3=left shoulder; 4=left elbow;
5=left wrist; 6=right shoulder; 7=right elbow; 8=right wrist; 9=mid torso; 10=root;
11=left hip; 12=left knee; 13=left ankle; 14=right toe; 15=right hip; 16=right knee;
17=right ankle; 18=right toe; 19=violin scroll; 20=violin left bout; 21=violin right
bout; 22=bow tip; 23=bow frog.

to do a preliminary analysis and observe recurring patterns and periodicities in
the motion data. Fig. 6 shows full Mocapgrams for the performances of the expert
violinist and of one of the neophytes (top left and top right graphs respectively)
on Vivaldi’s Violin Concerto excerpt (henceforth ‘first stimulus’). Regular colour
patterns in the horizontal rows corresponding to each marker suggest periodicity
in certain parts of the body and the instrument. As an example, the thinnest
pattern can be observed in the right elbow and wrist joints (labeled ‘7 R elbow J’
and ‘8 R wrist J’ respectively), which is consistent with the pattern visible in
the bow markers (‘22 bow tip J’ and ‘23 bow frog J’). This shows, expectably, a
certain coherence in the movement of the bow and the arm that holds it, as well as
high frequency periodicity caused by the repetitive bowing movements. Similarly,
it is straightforward to notice that the left toe of the expert (‘14 L toe J’) changes
position only three times throughout the whole take.

For the purpose of this study, Mocapgrams are useful not only to observe
general periodicity in the movement of certain parts of the body during the
performance. By providing an overall view of all the motion data, they also
allow to locate movements that affect the whole body, which are visualised by
vertical stripes that go across all the marker rows. In the first stimulus, the
most evident perturbation in the motion data of the expert can be clearly seen
between sec. 23 and 25. The waveform aligned to the graphs shows that this
general shift coincides with the peak the melody reaches at the beginning of bar
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Fig. 6. First stimulus (Vivaldi, score in Fig. 1). Full Mocapgrams and Periodic Quantity
of Motion (PQoM) estimates of the bow frog and hip markers for the expert violinist
(left) and one of the neophytes (subject 7, right) aligned to the waveform of the audio.
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9, before concluding the phrase on the minim at the end of the same bar. A
similar, albeit slightly delayed10, general perturbation in the motion data can
be observed in the neophyte around sec. 25. This is consistent with the data of
the other participants. Fig. 7 shows the magnitude of the mean velocities of the
upper body joints (labelled 1 to 8 in Fig. 5) of all the neophytes. Right hand and
elbow are plotted separately, since they are involved in the main instrumental
movement and therefore show the highest magnitudes. As it can be seen in the
graph of the first stimulus, the mean velocities of all joints drop near sec. 25, and
so do he values of the standard deviation. This confirms what observed above
for the expert and one of the neophytes and suggests a general tendency to parse
evident melodic phrases with overt body movements. As it can be noticed from
the full Mocapgrams, this phenomenon occurs repeatedly during the neophyte’s
performance and the same trend is visible in the data of the other participants.
This is consistent with findings in previous studies on air-performance showing
that beginners tend to move more than experts [16].

0 5 10 15 20 25 30
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800 1 2 3 4 5 6 7 8 9 10 11 12
Stimulus 1: mean velocities and SD of right wrist joint

Stimulus 1: mean velocities of upper body joints (1 − 6)
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Stimulus 1: standard deviation
1 2 3 4 5 6 7 8 9 10 11 12
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Stimulus 2: mean velocities and SD of right wrist joint

1 2 3 4

Stimulus 2: mean velocities of upper body joints (1 − 6)
1 2 3 4
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6

50

100
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Stimulus 2: standard deviation
1 2 3 4

0 5 10 15 20

1
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3
4
5
6

50
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Fig. 7. Mean velocities of right wrist and upper body joints (labelled 1 to 6, see Fig. 5
for the location). The graphs on the left show the values for the first stimulus (Vivaldi,
Fig. 1) while those on the right show the values for the second stimulus (Saariaho,
Fig. 2). The red numbers and the vertical dashed lines indicate the bar number and
downbeat location. Velocity is expressed in mm/sec and time in seconds.

The second stimulus used is an excerpt from Kaija Saariaho’s Nocturne for
solo violin (Fig. 2). Compared to the first stimulus, the pulse of the piece is less
steady and distinct. Each bar begins with a left hand pizzicato (‘+’ sign in the

10 The delay is plausibly due to the fact that the neophytes follow the audio recorded
during the expert’s performance, therefore their movements slightly lag behind the
ones of the expert.



Instrumental Movements of Neophytes 11

score) and continues with a glissando (or with two extra-metric groupings in the
case of bar 48), which then leads to a tremolo. The downbeat of each bar is clearly
punctuated by the pizzicato while the intermediate beats are more indistinct.
In the mean velocities for the second stimulus depicted in Fig. 7 we can in fact
notice sharper peaks and valleys around the bar lines. Those are the points were
the tremolo reaches its peak leading to the onset of the pizzicato gesture. The
individual Mocapgrams of the data (shown in Fig. 8 for the expert and one of the
neophytes) also show general perturbations around those key points, especially
around the downbeat of bar 3 and 4. Overall, there is ostensibly a clear intention
among all the participants to interpret the musical gesture of the pizzicato with
a sharp movement. Even though the location and extent of the movement may
differ from subject to subject, those musical events are consistently mapped to
similar gestural reactions.

3.3 Analysis of movement periodicity using Periodic Quantity of
Motion

Another useful descriptor used for analysing movement periodicity is Periodic
Quantity of Motion (PQoM). First introduced in [28], this index gives an es-
timate of the resonance of the movement periodicity with different rhythmic
subdivisions in the music. Inspired by the widely known Quantity of Motion
(QoM) [7, 8], PQoM is a motion descriptor useful to observe how movement re-
lates to rhythmic aspects of the music. PQoM is calculated by subdividing the
magnitude vector of the 3D motion data into frequency components by using fil-
ter banks. The frequencies of the filters correspond to multiples and subdivisions
of the musical rhythm of the piece. In the case of the first stimulus (Fig. 1), a
frequency of 1.5 Hz corresponds approximately to a steady crotchet beat, while
0.75 Hz correspond to a minim beat, 3 Hz to a quaver beat and 6 Hz to a semi-
quaver beat. The PQoM at a certain rhythmic subdivision is the magnitude of
the corresponding frequency component in the movement normalised between
0 and 1. PQoM was estimated for four components until the end of the audio
stimulus (sec. 33). By using PQoM, it is possible to relate the motion periodici-
ties initially observed in the Mocapgrams to the actual rhythmic features of the
musical stimulus. In Fig. 6, PQoM graphs of the bow frog marker and one of
the hip markers are aligned to the Mocapgrams. These two markers were chosen
as the former is a good indicator of the main instrumental gesture (bowing),
while the latter traces ancillary movements occurring in the lower half of the
body during the performance. As shown in a previous study [27], movements
in this area in some cases do not resonate evenly with the instrumental move-
ments in the upper body. This is noticeable here as well after a first glance at
the PQoM graphs in Fig. 6. Expectably, the bow frog PQoM of the expert is
generally higher. However, expert and neophyte seem to follow similar patterns
throughout their performances, with PQoM peaking around sec. 4 and 25 in the
0.75 Hz component, between sec. 6 and 16 in the 1.5 Hz component and at sec.
26 in the 3 Hz one. However, the two hip PQoM graphs look very different from
each other, sharing only a relative peak in the 1.5 Hz component around the
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Fig. 8. Second stimulus (Saariaho, score in Fig. 2). Full Mocapgrams and Periodic
Quantity of Motion (PQoM) estimates of the bow frog and hip markers for the expert
violinist (left) and one of the neophytes (subject 7, right) aligned to the waveform of
the audio.
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minim that closes the phrase in bar 9. In fact, the neophyte’s hip PQoM graph
shows that entrainment is remarkably more frequent and intense in that area
than in the expert’s. Moreover, by aligning PQoM graphs with Mocapgrams,
it is possible to add further details to previous observations. In correspondence
with the end of the phrase described previously (bar 9, sec. 23–25), there is a
sudden shift of the PQoM index from a peak in the minim beat frequency to
a peak in the quaver beat frequency after sec. 25. This salient turning point in
the melody is therefore consistently reflected in the movement of both subjects,
denoting a shared, embodied knowledge of the expressive qualities of the mu-
sic, which they express through their instrumental gestures regardless of their
expertise with the instrument.

As noted also in the previous section, compared to the first stimulus the sec-
ond stimulus (Fig. 2) lacks of the steady and evident allegro pulse. The excerpt
used has a much slower pace with expressive variations (the tempo indication
reads Sempre espressivo, calmo (♩ = c.54)). This is evident when looking at the
red bar lines plotted on the waveforms in Fig. 8, which denote bars of slightly
different durations. Therefore, we estimated the PQoM for several different fre-
quency bands (from 1 Hz to 13 Hz with a step of 1 Hz). The results show,
expectably, an overall less pronounced movement periodicity compared to the
first stimulus. However, there are notable peaks in the PQoM of the expert’s bow
frog, especially in the 2 Hz and 4 Hz frequency bands. This peaks occur right be-
fore the downbeat of each bar, in correspondence of the tremolo notes that lead
to the pizzicato notes. Notice the alignment of these peaks of periodicity with
the vertical stripes denoting movement across the whole body in the expert’s
Mocapgram at sec. 10 and 15. This peaks in PQoM values are ostensibly due
to the faster, repetitive bow strokes necessary to perform the tremolos. A peak
of periodicity, although weaker, can be observer also in the neophyte’s bow frog
marker, towards the end of bars 2 and 4 (approximately between sec. 10 and 12
and after sec. 20). Similarly to the previous stimulus, the bow frog PQoM of the
expert is generally higher. However, there are relative peaks around the same
areas, in correspondence with the tremolos.

The expert’s hip marker shows much weaker periodicity. Apart from some
barely noticeable peaks near in the areas leading to the downbeats of each bar
(which may denote some modest resonance with the periodicity of the bow frog
during the tremolo gestures), the PQoM values slightly increase in the low fre-
quency bands in bar 4. On the other hand, the PQoM values of the neophyte’s
hip marker are noticeably higher throughout, confirming the tendency observed
on the first stimulus. There is, again, more entrainment in the ancillary move-
ments of the neophyte. This supports the assumptions made in section 3.2 and
is yet again consistent with the findings of previous studies [16].

3.4 Results

The preliminary comparative analysis of the motion data of the first stimulus
suggests that high-level, structural features of the music are expressed through



14 Federico Visi, Esther Coorevits, Rodrigo Schramm and Eduardo Miranda

instrumental movements in similar ways by the subjects, regardless of their abil-
ity to play violin. In particular, the turning point of the melodic phrase at bar 9
seems to be something that is ‘felt’ by the subjects also in a strongly embodied
way, as it impacts the movement of the whole body and the periodicity of the
instrumental movements, which shifts sharply from a frequency to the other. In
addition to that, after the minim that closes the phrase there is a peak in the
3 Hz PQoM of the expert and an even higher one in the neophyte. This may
suggest that the suspension created by a longer note ending a phrase creates
a stronger expectation for the following melodic part, with which the neophyte
engages also through ancillary movements, as shown by the hip PQoM graph.
In fact, all the neophytes seem to have a more pronounced full-body periodicity.
This can be hypothesised by simply looking at the vertical stripes in the Mocap-
grams. However, PQoM gives a much more precise estimate of the periodicity in
relation to the musical rhythm. Nearly all the neophytes seem to have a generally
higher resonance with the periodicity of the music at the hip compared to the
expert, whose PQoM is instead higher at the bow frog. This can be observed
in both stimuli, and may lead to hypothesise that neophytes tend to follow the
pulse and the features of the music with ancillary movements also to compensate
for the lack of expressivity of their silent instrument. Doing so, they express the
musical content of the stimulus using their full bodies.

Compatibly, the data of the second stimulus (even though musically very
different from the first one) also suggest the major structural features of the
musical excerpt are expressed through instrumental movements in similar ways.
The second stimulus shows expectably less entrainment due to its slower and
more implicit rhythmic features. However, the bar subdivision delineated by the
rising tremolos and the pizzicatos are clearly expressed by the neophytes through
instrumental and body movements.

4 Analysis of Individualities and Commonalities

Our interaction with music engages the whole body, but not all body parts show
the same behaviour [4, 27]. In this analysis, we focus on the movements of the
head and the right wrist. In fact, previous research has shown that string players
communicate expressive qualities of the music through head movements [15, 10].
In addition, we also address the movements made by the right wrist, a body
part that is directly involved in sound-producing gestures, as the bow is moved
by the right hand.

In this analysis, the performances of all the 12 neophytes are taken in con-
sideration. The first derivative (velocity) was calculated from the motion data of
each subject using a Savitsky-Golay smoothing filter with a regression window
of 7 frames [6] and the resulting signals were set equal to the norm of the deriva-
tives. Secondly, the speed envelope was calculated using a moving average filter
of 100 frames in case of the Vivaldi and 150 frames in case of the Saariaho to
make sure the beat of the music (1,5 Hz for the Vivaldi, 0.7 Hz for the Saariaho)
was covered by the window and at the same time avoid losing too much nuances
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in the movement. We then compared the speed of the body movements, as this
feature is closely related to kinetic energy [12]. To check if the data was normally
distributed, a Weibull function was fitted to the distribution of the speed values
across subjects at all moments in time. The mean speed signal of both head
and wrist at each timestamp over participants was approximately normally dis-
tributed, corresponding to a shape parameter of the fitted Weibull distribution
between 2.7 and 3.2 for both pieces.

4.1 Modelling head and wrist movements

The method for the analysis of expressiveness proposed by Amelynck et al. [2]
is based on Functional Principal Component Analysis (FPCA). FPCA allows to
describe a signal as the sum of an average signal f̄(t) with a linear combination of
a set of eigenfunctions ξk(t) (commonality). Each subject can then be represented
by one score (αi) per eigenfunction (individuality):

fi(t) = f̄(t) +

K∑
k=1

αik ξk(t) . (1)

This way, the dimensionality of the problem is reduced and as much variance
as possible is covered by only a small set of eigenfunctions. According to this
method, the set of eigenfunctions should explain at least 70% of the variance. For
our modelling, a correlation matrix based on the speed envelope of all subjects
over time C(t1, t2) is used as an input. An additional assumption for using
FPCA is that there is a relationship between values in C that are only few
samples apart. Therefore, the data is decomposed in a set of Cubic B-spline
basis functions. To determine a reliable number of basis functions, the Mean
Squared Error between model and signal was calculated. For both the head and
wrist, and in both stimuli, the number of basis functions could be set to 60.
A set of eigenfunctions could then be calculated by means of FPCA, using a
least square algorithm. As the human body show complex behaviour, Varamix
rotation of the functional principal component axes was applied to calculate
a basis of eigenfunctions that most economically represent each individual by
a linear combination of only a few basis functions. FPCA was performed using
Ramsay’s FDA toolbox for MATLAB. His approach [26] was followed throughout
the procedure.

4.2 Results

To cover more than 70% of the variability of the head in the performance of the
Vivaldi excerpt, we need up to three eigenfunctions that account for 40%, 28%
and 19% respectively, totalling 87% of the variability (Fig. 11). An equal amount
of eigenfunctions is needed for the wrist as 84% of the variability is covered with
40%, 15% and 29%. This means that, with only three eigenfunctions, we can
model more than 80% of the commonalities in the head and wrist movements of
the neophytes miming a violin performance following the musical stimulus. The
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individuality of each subject was obtained by calculating the Functional Princi-
pal Component Score for the three eigenvalues. The individual performance can
hence be modelled by three values indicating a positive or negative score for each
eigenfunction. As few individualities were required for the model, this suggests
that music was embodied in similar ways among the subjects.

For the head, the first eigenfunction has a positive deviation from the group’s
mean for almost the entire stimulus. This means that subjects with a positive
factor on this function will perform with higher speed than the average, nearly
throughout the whole recording. In more detail, this eigenfunction reveals some-
thing about the periodic movement and phase of the head. Subjects scoring low
on this eigenfunction will have low velocity in the beginning of the bar, and
higher velocity in the middle (bars 1, 3, 4, 7, 9, 10, 11, 12), while subjects scor-
ing high will have their velocity peak in the beginning of each bar. In the middle
of bar 7, this is reversed and bar 8 and 9 have an opposite velocity profile. Note
that this is the moment where the repeated note sequences end and new musical
material starts. In the beginning of bar 6, the eigenfunction values are close to
the mean. The second eigenfunction has a major positive deviation from the
mean in bar 5,6 and 7, the second half of bar 8 and bar 9, and the last two bars.
This is complementary to the first eigenfunction. The third eigenfunction has a
major negative deviation, especially in the first 4 bars and bar 8.

The first eigenfunction of the right wrist has a major positive deviation in
bars 2-3, 6-7 and 10-12 and the second eigenfunction accounts for a positive
offset in bars 1 and 8 in particular. Again, the third eigenfunction has a negative
deviation from the group’s mean, especially covering the variability in bars 3-
6, and 8-10. Fig. 10 shows the individualities for the head and wrist, clustered
using k-means clustering. The number of clusters was set to 5 for the head and 4
for the wrist, after considering the optimal number with k-fold cross validation.
These three variables are the principal component scores, or weights for the
eigenscores, which represent the performance of the individual subject.

Some intervals of coherence (i.e. time intervals of equal signs) could be derived
from these results. When an eigenfunction has multiple intervals of coherence
it can be considered consistent. For the head, the first eigenfunction shows this
behaviour from the middle of bar 4 until the end of bar 5, as well as from bar
7 until the end of bar 10. The second eigenfunction covers this for bars 5-7, 9,
11 and 12. The third eigenfunction does not show long intervals of equal signs,
except for the first bar. Coherence for the right wrist movement is found in
the first eigenfunction from bars 2-4, the middle of bar 57 and bars 11-12. The
second eigenfunction reveals coherence in the first bar and from the middle of bar
7 until the end of bar 8. From bar 3 until the beginning of bar 7 and bars 8-10 are
coherent in the third eigenfunction. Thus, each eigenfunction dominates specific
time intervals in the musical structure and they are mostly complementary to
each other. The third eigenfunction of the wrist, for example, nicely reflects the
repeated notes in the music (bar 37) and the new musical material introduced
in bar 8-9 and 10. A similar effect can be seen in the second eigenfunction of
the head. The last two bars of the musical stimulus (11-12) are also represented
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of head and right wrist movements after Varamix rotation. The green line indicates a
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in two eigenfunctions (the second eigenfunction of the head and the first of the
wrist).
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Fig. 10. First stimulus (Vivaldi, score in Fig. 1). Individualities for head and right
wrist movements, clustered using k-means clustering.

For the second stimulus, two eigenfunctions are sufficient to explain 70%
of the variability of the head, and with three eigenfunctions, even 88% of the
variability is covered. For the wrist, three eigenfunctions (47%,18% and 21%
resp.) are sufficient as well. Again, this means that we can model the behaviour
of the neophytes with a limited number of eigenfunctions, pointing at similar
embodied behaviour.

The first two eigenfunctions considered in the head are very consistent, with
the first eigenfunction showing increasing positive and decreasing negative offsets
towards the end of the excerpt. The second interval shows very distinct intervals
of coherence that correspond to the intervals of the bar. Participants with a
positive eigenvalue for this function in general will have a lower velocity within
each bar and an increase in velocity towards the next bar, while the participants
with a negative eigenvalue show opposite behaviour. The points of convergence
at the bar transitions show that the second eigenfunction mostly accounts for
individual behaviour within each bar.

The third eigenfunction reveals different timing behaviour of the participants,
with a negative offset meaning an earlier peak than a positive offset. This was
validated using cross-correlation with the maximal correlation at -0.296 seconds,
showing an interesting parallel with the typical reaction time of people in tapping
tasks, which generally lies between 200 - 300 ms [3]. It could be that the difference
between participants in how well they predict what will happen in the stimulus,
is expressed with this eigenfunction.

The first eigenfunction of the wrist movement in the Saariaho excerpt shows
a general positive offset. Moreover, it can be clearly observed that the difference
in musical material in the fourth bar is reflected in the movement of the wrist:
there is a point of convergence in the middle of the fourth bar, while this does
not appear in the other three bars where pitch changes appear mostly in the
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beginning of the bar. The second and third eigenfunction of the wrist are very
complementary in the case of the Saariaho piece, where the second eigenfunction
accounts for the variability in the beginning of the first bar and the transitions
between bar 2-3 and 3-4 and the last part of the fourth bar, while the third
eigenfunction accounts for the variability in the middle of these bars. This last
eigenfunction is very similar to the second eigenfunction of the head, but less
pronounced though.

In general, it could be observed that the head is a body part that shows
very clear intervals of coherence that match well with the timing structure of
the piece (whole phrase, bars and reaction time of participants).

5 Conclusion and Future Work

Even though low-level features of movement appear to vary considerably in some
of the subjects, there is a certain degree of consistency among participants,
especially in response to melodic, rhythmic, and timbral features of the music.
This suggests a shared knowledge of a vocabulary of instrumental movements,
which is then combined with the idiosyncrasies of each subject. The analysis of
commonalities and individualities confirms this, and other studies [23] support
the idea that musical structure is communicated also through body movements,
and idiosyncrasies contribute to express musical meaning.

Further work will go towards studying the response of the subjects also to
the other musical stimuli recorded during the experiment. Each stimulus differs
substantially from the other, providing material for analysis of movement in
response to other musical features.

New approaches to movement analysis are in continuous development and
there is an increasing need for tools that can aid the retrieval of meaningful
features in complex, multidimensional motion data. Therefore, other approaches
– like Topological Gesture Analysis (TGA) [25] – will be tested and possibly
employed along with the methods we presented here. New techniques for motion
data analysis could get inspired by concepts suggested by theories of music per-
ception and cognition, therefore making the analysis more akin to how humans
perceive and move to music. This is indeed a challenging task since retrieving
meaningful, articulated information from motion data requires complex algo-
rithms and technologies.

The PQoM algorithm will also be refined and improved for real-time imple-
mentation. This will be useful both for online analysis and interactive music
performance (which was initially explored in [28]).

Motion data analysis has provided great detail for understanding the role of
body movement in musical expression and cognition. However, it is felt that in-
tegrating quantitative data analysis with qualitative analysis and practice-based
research may broaden the scope of the research, allowing to test the assumptions
made through the analysis in musical contexts, outside of the sterile environment
of the laboratory.
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