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27.1 Introduction

This chapter presents an overview of Interactive Machine Learning (IML) techniques
applied to the analysis and design of musical gestures. We go through the main
challenges and needs related to capturing, analysing, and applying IML techniques to
human bodily gestures with the purpose of performing with sound synthesis systems.
We discuss how different algorithms may be used to accomplish different tasks,
including interacting with complex synthesis techniques and exploring interaction
possibilities by means of Reinforcement Learning (RL) in an interaction paradigm
we developed called Assisted Interactive Machine Learning (AIML). We conclude
the chapter with a description of how some of these techniques were employed by the
authors for the development of four musical pieces, thus outlining the implications
that IML have for musical practice.

Embodied engagement with music is a key element of musical experience, and the
gestural properties of musical sound have been studied from multiple disciplinary
perspectives, including Human-Computer Interaction (HCI), musicology, and the
cognitive sciences [1]. Likewise, designing gestural interactions with sound synthesis
for musical expression is a complex task informed by many fields of research. The
results of laboratory studies of music-related body motion based on sound-tracing
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were indicated as a useful starting points for designing gestural interactions with
sound [2]. Informed by environmental psychology, the notion of sonic affordance
was introduced to look at how sound invites action, and how this could potentially
aid the design of gestural interfaces [3].

Designing and exploring gestural interactions with sound and digital media is at
the foundation of established artistic practices where the performer’s body is deeply
engaged in forms of corporeal interplay with the music by means of motion and
physiological sensing [4]. Gesture and embodiment become the core concepts of
extended multimedia practices, where composition and interaction design develop
side by side [5, 6], and gesture is a fundamental expressive element [7].

27.1.1 Why Machine Learning Musical Gestures? Needs
and Challenges

Designing gestural interactions that afford dynamic, consistent, and expressive artic-
ulations of musical sound is a challenging and multifaceted task. A key step of the
design process is the definition of mapping functions between gesture tracking signals
(usually obtained through some motion sensing device) and sound synthesis param-
eters [8]. These parameter spaces can be very complex, depending on the motion
sensing and sound synthesis approaches adopted. An effective mapping strategy is
one of the crucial factors affecting the expressive potential of a gestural interaction,
and as the spaces defined by motion signals and synthesis parameters become more
highly-dimensional and heterogeneous, designing mappings can be an increasingly
elaborate task, with many possible solutions [9].

In this scenario, gestural interaction design is a robust nontrivial problem, and
Machine Learning (ML) techniques can be used by researchers and artists to tackle
its complexity in several ways. One of the most notable implications of using ML in
this domain is that mappings between gesture and sound can be interactively “shown”
to a system capable of “learning” them [10] instead of being manually coded, which
in certain situations could become excessively complex and time consuming. In other
words, this delineates an interaction design paradigm where interactive systems shift
from executing rules to learning rules from given examples [11]. This has advantages
in collaborative and interdisciplinary creative practices, as it makes trying and work-
shopping different gestural interactions easier and quicker, and enables practitioners
that are unfamiliar with programming to prototype their own gestural interactions.
Moreover, software tools such as the Wekinator [12] and ML libraries for popular pro-
gramming environments in the arts [13] have made ML for gestural interaction more
accessible and easier to learn. Another advantage of interaction design approaches
based on ML is that mapping models can be trained to be more resilient to noisy
signals. This can be challenging to achieve with manually programmed mappings.
This is particularly useful with certain motion tracking technologies and physiologi-
cal sensors (see Sect.27.2). Noise is not, however, the only challenge when tracking
and analysing body movement for musical interaction. Motion tracking systems may
return considerably different data when the user changes, different motion sensing
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Fig.27.1 Architecture of an Interactive Machine Learning system for gestural musical interaction

technologies measure and represent movement in very different ways, musical ges-
tures may convey musical ideas at different timescales [14], and therefore, it should
be possible to model both spatial and temporal features of musical gestures whilst
maintaining the possibility of dynamic and continuous expressive variations. We will
now describe how ML is a helpful resource in addressing these challenges.

27.1.2 Chapter Overview

The sections that follow will describe the main components of an IML system for
gesture-sound interaction—schematised in Fig. 27.1—namely motion sensing, anal-
ysis and feature extraction, ML techniques, and sound synthesis approaches. Fol-
lowing this, we will describe the typical workflow for deploying an IML system for
gesture-sound mapping and how this model can be extended further using RL to
explore mapping complexity in an AIML system prototype. We will then describe
how these models were used in some pieces composed by the authors, before clos-
ing the chapter with some remarks regarding the necessity of adopting an inter-
disciplinary approach encompassing basic research, tool development, and artistic
practice in order to make substantial advances in the field of expressive movement
interaction. We finish by showing that the research field has implications stretching
beyond the musical domain, given the increasing role of ML technologies in everyday
life and the peculiarities that make music and the arts a fertile ground for demystify-
ing ML and thereby understanding ways of claiming and negotiating human agency
with data and algorithmic systems.

27.2 Machine-Sensing Gesture

Capturing body movement for the purpose of real-time interaction with sound may
be done by various technological means. Rather than providing a list of the many
devices available for this purpose, we will describe the main approaches for tracking
body movement employed in the context of music and multimedia performance, and
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the implications that adopting an approach over another has for using ML techniques.
These include notes on how different types of motion data represent movement, and
the opportunities afforded by the use of physiological data.

27.2.1 Sensing Movement

Optical Sensing

Optical motion sensing relies on the analysis of the signals coming from various
kinds of video cameras. There are many examples of multi-camera systems used in
the arts [15, 16] as well as of systems using more sophisticated optical approaches
such as depth and stereoscopic cameras.

Despite the technology being a few decades old, marker-based infra-red Motion
Capture (MoCap) is still considered as one of the most reliable methods for measuring
complex movement in a three-dimensional space. Tracking precision and temporal
resolution have progressively improved, allowing accurate tracking of finger move-
ments and facial expressions. Recent MoCap systems are also capable of streaming
motion data live, thus making real-time applications possible. Data obtained from
these systems is usually in the form of three-dimensional vectors referring to a global
coordinate system. Each sample in the data returns three-dimensional information
regarding the position of a point (marker) in space in relation to the origin of the
Cartesian axes. The origin is defined during the calibration procedure and is usually
set in an arbitrary place on the floor within the capture area. Most marker-based
systems also allow to track movement in six degrees of freedom (6DoF), meaning
that—in addition to position along the three spatial axes—the system also returns
information on the orientation and rotation of a point in space along three rota-
tional axes. This information is usually represented in Euler angles or quaternions.
In MoCap systems, 6DoF tracking is usually achieved by processing positional data
of single markers grouped into a rigid body in a predefined spatial configuration. This
should be unique for each rigid body in order to avoid mislabelling when multiple
rigid bodies are in the capture space at the same time.

Inertial Measurement Units

Inertial Measurement Units (IMU) are small, low-cost, highly portable devices that
incorporate accelerometers and gyroscopes. When these devices are paired with
magnetometers, the resulting arrays are also known as Magnetic, Angular Rate, and
Gravity (MARG) sensors. These sensor arrays allow the tracking of acceleration,
rotational velocity, and orientation relative to the earth’s magnetic field of whatever
they are attached to. They are used extensively in aviation, robotics, and HCI. Their
increasing affordability and small size have made them a very common feature of
mobile and wearable devices and other consumer electronics. Sensors featuring 3D
accelerometers, 3D gyroscopes, and 3D magnetometers have become the most widely
used type of IMU/MARG. They enable the estimation of various motion features
including optimised three-dimensional orientation obtained by fusing together the
data from the different types of sensors. These devices are often marketed as 9DoF
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(9 Degrees of Freedom) sensors, since they consist of three tri-axis sensors and thus
have a total of nine sensitive axes.

Whereas the raw data obtained using marker-based optical motion capture consists
of samples of position based on a 3D Cartesian coordinate system, the data returned
by IMU/MARG sensors is usually in the form of three three-dimensional vectors,
each one expressing acceleration, rotational velocity, and orientation, respectively.
Calculating absolute position from the data of a single IMU in real time is technically
very difficult if not unfeasible, as the operation would require double integration of
acceleration data. This would result in a considerable amount of residual error since
drift would accumulate quadratically.

The lack of reliable information on absolute position when using single IMUs
is a key difference between data obtained through inertial sensing and that of opti-
cal motion capture. The data obtained from IMUs sensors is morphologically very
different from positional data returned by optical MoCap. The differences in the
way movement is tracked and represented by the two different technologies have
implications on how movement data is eventually interpreted and used, particularly
in the context of expressive movement tracking and ML of musical gestures. As an
example, single IMUs afford working with movement relative to the body of the
performer and postures, whereas having access to absolute positions may enable
interaction strategies that take into consideration the spatial relationships between
different performers and the different areas of the performance space where action
takes place.

27.2.2 Sensing the Body

It can be argued that representing human movement solely as displacement of body
parts in three-dimensional space would result in a limited interpretation. Merleau-
Ponty maintains that we act upon the environment through proprioception and “a
knowledge bred of familiarity which does not give us a position in objective space”
[17, p. 166]. Salazar Sutil [18] points out that the conceptualisation of corporeal
movement is often optically biased, where sensations that are independent of sight
are often neglected. Thus, we argue that expressive body movement cannot be entirely
represented, and therefore, fully understood exclusively by means of visual media.
In the context of music performance, we looked at the concepts of intention, effort,
and restraint in relation to the use of electromyogram (EMG) for digital musical
instrument application [19]. EMG is a signal representing muscle activity employed
in the biomedical and HCI fields as a highly sensitive way to capture human move-
ment and has been used as a signal with which to sense musical gesture [20, 21].
Using EMG for music presents several challenges. The raw signal itself resembles
noise and sensing such a low voltage signal is difficult to do without accumulating
noise from the environment. Individual anatomies vary and we each employ our
muscles differently, even when performing what looks like the same gesture. Basic
signal processing can only go so far when interpreting expressive, nuanced biosig-
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nals. Adopting approaches based on ML can considerably help with these challenges,
making EMG an attractive technology for musical interaction. In particular, super-
vised learning approaches—which will be described in Sect. 27.4—constitute a way
for tackling the intersubject variability and the noisy quality of muscular signals.

27.3 Analysing Gesture

High-level descriptors are often used to extract features from raw motion data to
help describing body movement in a more meaningful way. Such descriptors are fre-
quently employed in expressive movement analysis, motion recognition, and music
performance analysis. Feature extraction is a crucial step in an IML pipeline. This is
an important task, as it will affect how ML algorithms will interpret body movement,
and therefore, determine the affordances of the resulting gesture-sound interactions.

Programming environments such as Eyesweb [22] offer solutions dedicated to
real-time human movement analysis and feature extraction. Libraries for real-time
motion analysis such as the Musical Gesture Toolbox were initially dedicated mainly
to standard RGB video analysis [23]. The library has been developed further to
process MoCap data and be compatible with several programming environments
[24]. Notably, some of the features that were initially designed for analysing video
data—such as Quantity of Motion (QoM, see Sect.27.3.1)—have been extended for
the use with MoCap data. We developed the modosc library to make methods for
handling complex motion data streams and compute descriptors in real time available
in music performance systems [25, 26]. At the time of writing, the library is being
extended for use with IMU and EMG in addition to MoCap data. The following
sections will give an overview of some of the descriptors most widely used for
processing motion and EMG data.

27.3.1 Motion Features

Fluidity

Inspired by the theoretical work on human motion by Flash and Hogan—which
maintains that trajectories of human limbs can be modelled by the minimum jerk law
[27], Piana et al. [28] defined Fluidity Index as the inverse of the integral of jerk.
Jerk or “Jolt”—is the third-order derivative of position, i.e. the rate of change of the
acceleration of an object with respect to time. Fluidity Index has been used with
supervised learning algorithms for the purpose of recognising expressed emotions
from full-body movement data [28].

Quantity of Motion

Fenza et al. defined Quantity of Motion (QoM) as the sum of the speeds of a set of
points multiplied by their mass [29]. Glowinski et al. [30] included a similar measure
in their feature set for the representation of affective gestures, denoted as “overall
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motion energy.” This motion feature has also been used for real-time video analysis
[23] and a version for IMU data was also proposed [5].

Contraction Index

Contraction Index is calculated by summing the Euclidean distances of each point
in a group from the group’s centroid [29]. It is an indicator of the overall contraction
or expansion of a group of points and—similarly to Fluidity Index—it has been used
for emotion recognition applications [28].

When using independent inertial sensors, the lack of positional data might make
it difficult to compute Contraction Index. We proposed an alternative measure of
contraction and expansion of body posture using IMU data in [5]. This solution uses
the Euclidean distance between projected points to estimate whether the limbs of a
person wearing IMUs are pointing in opposite directions.

Bounding Shapes

Bounding shapes have been used in the analysis of affective gestures [30] as well as
in dance movement asnalysis [31]. Several bounding shapes can be used for real-time
movement analysis. For example, a bounding box 1s the rectangular parallelepiped
enclosing a given group of points in a 3D space. Assuming these points are placed
on the body of a performer, the height, width, and depth of the bounding box can be
used as an indicator of the posture of the full-body evolves over time. The minimum
polyhedron that encloses a given group of points in a 3D space is instead called
three-dimensional convex hull. The volume of the convex hull represents the size of
the space the body interacts with and can be used as a feature for various ML tasks.

Periodic Quantity of Motion

Periodic Quantity of Motion (PQoM) was proposed as a way to measure periodicity in
the movement in relation to the musical rhythm [5], or—in other words—how much
body movement resonates with each rhythmic subdivision (i.e. quarter note, eighth
note, etc.). The first PQoM implementation was designed to extract periodic motion
from optical motion capture data [32]. The PQoM is estimated by decomposing the
motion capture signal into frequency components by using filter banks [33]. The
amplitude of the signal for each frequency component corresponds to an estimate of
the resonance between the corresponding rhythmic subdivision and the movement.
A script for PQoM estimation was made available as an extension to version 1.5 of
the MoCap Toolbox for Matlab [34], and a redesigned version of the script has been
made available [35].

27.3.2 EMG Features

Signal Amplitude

One of the most important features of EMG signals is the amplitude of the signal
with respect to time. This measure is related to the force exerted whilst executing
a gesture. Given the complexity and variability of the EMG signal, reliable ampli-
tude estimation may be challenging. Simply applying a low-pass filter to the signal
to reduce undesired noise may result in the loss of sharp onsets describing rapid
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movement and may also introduce latency when processing the signal in real time.
Adopting a nonlinear recursive filter based on Bayesian estimation [36] significantly
reduces the noise whilst allowing rapid changes in the signal, greatly improving the
quality of the signal for real-time gestural interaction.

Mean Absolute Value

Mean Absolute Value (MAV) is one of the most popular features used in EMG
signal analysis [37]. It has been shown that MAV is more useful than other features
for gesture recognition tasks based on supervised learning algorithms [38]. MAV
corresponds to the average of the absolute values of the EMG signal amplitudes in
a given time window. When computed in real time, a larger time window returns a
smoother signal, whilst a shorter one can be useful to track sharper onsets in muscular
activity.

Root Mean Square

Root mean square (RMS) is a common signal processing feature, widely used for
audio analysis. With EMG signals, it has been used together with ML algorithms for
gesture classification tasks [39]. RMS is equal to the square root of the sum of the
squares of the values of the signal in a given time window.

Teager-Kaiser Energy-tracking Operator

The Teager-Kaiser Energy-tracking Operator (TKEO) was first proposed as a way
for estimating energy in speech signals [40]. It has been employed for a variety of
signal processing tasks, including noise suppression [41]. It has been shown that
TKEO considerably improves the performance of onset detection algorithms also in
situations with a high signal-to-noise ratio [42]. The feature can be easily calculated
from three adjacent samples. For each signal sample, TKEO is equal to the square
of the amplitude minus the product of the precedent and successive samples.

Zero Crossing Rate

The Zero Crossing Rate (ZCR) corresponds to the number of times the signal changes
sign within a given time window. Widely adopted in audio signal processing, ZCR
is used to recognise periodic sounds from noisy ones and is employed in speech
recognition [43]. In [44], we used ZCR as one of the features for the analysis of two
different modalities of muscle sensing to explore the notion of gesture power.

27.4 Machine Learning Techniques

ML techniques are statistical analysis methods and computational algorithms that
can be used to achieve various tasks by building analytical models (i.e. “learning”)
from example data. Many ML techniques involve a training phase and a testing
phase. During the training phase, sample data is used to model how the system
should respond and perform different tasks. During the festing phase, new input data
is fed into the model, which then responds and performs tasks following decisions
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based on structures and relationships learned during the training phase. As an exam-
ple, during the training phase a performer using motion sensors may want to record
a gesture and associate it to specific sounds being produced by a sound synthesis
engine. Then during the testing phase, the performer moves freely whilst the system
follow their movements and infer which sounds should be played according to the
examples given during the training phase. This allows for flexibility and generalisa-
tion, making ML techniques particularly useful for complex applications that involve
many variables and that may be dependent on factors that are difficult to predict or
control, such as the environments in which systems are deployed, or high variability
in how the system responds to different users. For example, in a musical context
one may want to use a gesture-sound interaction system in different performance
spaces, which may have different lighting conditions. This may result in undesirable
unexpected behaviours, such as the system responding differently in the concert hall
where a piece is to be performed compared to the space where the piece has been
rehearsed. Moreover, the system may be used by different performers, whose bodies
may differ considerably and thus be tracked differently by various types of sensors
(see Sect.27.2). In such situations designing interactions by explicitly programming
how each sound parameter should behave in response to incoming sensor data might
be too time-consuming, impractical, or result in interactions that are too shallow and
do not afford expressive variations.

There are several standard learning strategies to train a programme to execute spe-
cific tasks [45]. Amongst the most common paradigms, we find Supervised Learning
(SL), Unsupervised Learning (UL), and Reinforcement Learning (RL). In SL, the
training data consists of input paired with the desired output. In other words, train-
ing examples are labelled. For example, in a supervised learning scenario motion
feature data is paired with the desired sound and passed to the learning algorithm
as training data. Classification and regression are some of the most common super-
vised learning tasks. In UL, training data is unlabelled. The goal is learned from the
data itself, by analysing patterns and underlying structures in the given examples.
As an example, a set of unlabelled sounds may constitute the training set and the
task of the unsupervised learning algorithm may be to group the sounds that have
similar features. Common unsupervised learning tasks include clustering and dimen-
sionality reduction. We employed dimensionality reduction approaches to observe
commonalities and individualities in the music-related movements of different peo-
ple miming instrumental performance [46]. Strategies in RL entail giving feedback
in response to the algorithm’s output. The goal of the algorithm is to maximise the
positive feedback—or rewards—they are given by a human (or by another algorithm)
that is observing the outcome of their actions. Training and testing phases here are
more intertwined than in typical supervised and unsupervised strategies, as training
occurs through testing. For example, in a RL scenario, one may task an algorithm
to propose some sound synthesis presets, and the user may give positive or negative
feedback in order to obtain a sound that is closer to their liking. Parameter space
exploration is a task associated with this learning strategy. A gesture-sound mapping
exploration method that takes advantage of RL [47] will be described in Sect.27.6.
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The following sections will outline how these strategies are employed to perform
tasks often associated with ML of musical gesture, namely classification, regression,
and temporal modelling.

27.4.1 Classification

Classification is the task of assigning a category, or class, to an item. In a super-
vised learning scenario, the training dataset is constituted by items labelled with
the category they belong to. The training dataset is then used to build a model that
will assign labels to new unlabelled items, or instances, that have not been classified
before. As an example in the context of musical gestures, the training set may be
made of discrete gestures (e.g. tracing a circle in the air, or a triangle...) where the
sensor data and motion features resulting from performing such gestures are paired
with the corresponding label (circle, triangle, etc.). These labelled gestures constitute
a vocabulary. In performance, the classifier may be used to track the movements of
the performer and recognise when one of the gestures in the vocabulary is being
performed. Successful recognition of one of the gestures in the vocabulary may be
then paired with specific musical events (e.g. play a kick drum sample when the
tracked gesture is classified as a circle, play a snare sample when the gesture is
classified as a triangle, etc.). In a typical gesture classification scenario, classifi-
cation occurs after the gesture is performed, and output of the model is discrete,
meaning that a gesture will always belong to one of the defined classes. Common
algorithms for classification include K-Nearest Neighbours (k-NN), Adaptive Boost-
ing (AdaBoost), Support Vector Machines (SVM), and Naive Bayes. These and other
algorithms are described in detail in the manual by Hastie et al. [48]. It is important to
note that different classification algorithms afford different interaction sound param-
eter mapping approaches. For example, by using a probabilistic classifier such as
Naive Bayes, one can use the probability distribution (i.e. the set of likelihoods that
the incoming gesture belongs to each of the predefined classes) and map their values
to parameters (e.g. a set of volume levels) instead of using the class labels to trigger
discrete musical events. Finally, classifiers can be used to recognise static postures
if trained—for example—with data describing the absolute or relative position of
parts of the body of a performer. Classification of gestures based on how they unfold
over time can be done by using various temporal modelling approaches, which will
be described in Sect.27.4.3.

27.4.2 Regression

Regression is the task of estimating the relationship between an independent variable
(or a feature) and a dependent, or outcome, variable. This is done by building a sta-
tistical model that explains how the variables are related, and thus allows to infer the
value of the dependent variable given the independent variable. The model describ-
ing this continuous function is built using a set of discrete samples of independent
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variables (the input) paired with the corresponding values of the dependent variables
(the output). Building a regression model is a supervised learning problem, given that
to do so one requires labelled data (input paired with corresponding output). Regres-
sion is used in several domains for tasks such as prediction and forecasting. In the
context of musical interaction, regression is an attractive approach as it allows to
define complex, continuous mapping functions between gesture features and sound
synthesis parameters. This can be done by providing examples consisting of sample
input data (e.g. motion or EMG features, see Sect.27.3) paired with sound synthesis
parameters.

Artificial Neural Networks (ANN) are an efficient way to build linear regression
models. A typical ANN is a network of binary classifiers—called perceptrons—
organised in a number of layers. Perceptrons are also referred to as “neurons” or
“nodes.” The first layer of the network (the input layer) has a node for each input
feature. Perceptrons in layers after the input layers produce an output based on the
activation function (the binary classifier, generally a sigmoid function, but other acti-
vation functions may be used) applied to the input they received from the previous
layer. The function includes a set of weights applied to each input and an additional
parameter, the bias. After producing the output of each node feeding layer after layer
(the feedforward process), the error is calculated and a correction is sent back in
the network in a process known as backpropagation. After a number of iterations,
or epochs, the error is progressively reduced. ANNSs are an attractive ML technique
when dealing with real-time motion tracking, as they can handle errors in the incom-
ing data (which may be caused by noisy sensor signal) relatively well.

The model obtained by training a neural network may then be used to map
incoming motion features to sound synthesis continuously and in real time. Sev-
eral approaches based on regression may be used to map gestural features to sound
synthesis [20]. We have developed the GIMLeT pedagogical toolkit for Max [49] to
provide some practical examples of using linear regression for this purpose. How-
ever, ordinary ANNs do not take into account the temporal aspects of the input data.
The next section will look at some of the approaches designed to analyse and follow
the evolution of a gesture in time.

27.4.3 Temporal Modelling

Gesture unfolds over time, and gestures that may look similar in terms of displace-
ment in space may differ radically in expressivity depending on their temporal evo-
lution. For example, moving an arm outwards very slowly or very fast following the
same trajectory may convey very different expressive intentions. Whilst certain types
of neural networks such as Echo State Networks exhibit short-term memory and can
be trained to operate on temporal aspects of their input [50], longer time spans require
different approaches. Dynamic Time Warping (DTW) [51] is a technique that allows
to temporally align incoming time series (e.g. motion features changing over time) to
previously saved gesture templates. Templates are pre-recorded gesture examples.
The DTW algorithm will attempt to align incoming gesture features to the set of
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recorded gesture templates, also referred to as a gesture vocabulary. This way, it is
possible to perform various tasks including assessing to which gesture template the
incoming motion data is closer to. DTW has been used extensively for music appli-
cations such as musical gesture classification [52], to evaluate the timing of musical
conducting gestures [53], or as a distance measure to place musical gestures in a
feature space [46]. One major drawback of DTW for musical applications is that,
albeit giving access to how a gesture evolves over time, recognition occurs only after
the gesture has been fully performed, and thus not continuously. Bevilacqua et al.
[54] proposed a real-time gesture analysis system based on Hidden Markov Models
(HMM). This method allows to continuously recognise a gesture against stored ges-
ture templates, outputting parameters describing time progression (i.e. how much of
the gesture has already been performed, this is known as “gesture following”) and
the likelihood of the gesture belonging to one of the predefined gesture classes. This
allows musical interactions such as audio stretching/compressing in synchronisa-
tion with gesture performance. Francgoise et al. [55] extended this approach further,
proposing a set of probabilistic approaches to define motion to sound relationships.
These include a hierarchical structure that allows to switch between the difference
gestures in the vocabulary and follow the temporal progression of the likeliest match-
ing template whilst performing, and a multimodal approach that models the temporal
evolution of both the motion features and the sound parameters. Caramiaux et al.
[56] proposed extensions to continuous gesture following by focusing on the online
analysis of meaningful variations between gesture templates and performed gestures.
Their approach uses particle filtering for tracking variations from the recorded tem-
plate in real time, allowing to estimate geometric variations such as scaling (i.e. how
much is the gesture bigger/smaller than the template?), rotation angles (i.e. how much
is the performed gesture tilted with respect to the template?), and temporal dynamics
(i.e. is the gesture performed faster or slower than the recoded template?). These
gesture variation parameters can then be mapped to sound synthesis parameters. For
example, the authors describe a study where an increase in scaling corresponds to
louder volume, temporal dynamics are mapped to the playback speed of samples,
and rotation angles to high-pass filtering [56, p. 19].

27.5 Sound Synthesis and Gesture Mapping

Modern sound synthesis techniques are often characterised by a high number of
parameters one can manipulate in order to make different sounds. Whilst these afford
vast synthesis possibilities, exploring the resulting extensive parameter spaces may be
a challenging task, which can be particularly difficult to accomplish by manipulating
every parameter by hand.

The choice of synthesis algorithm, therefore, can be one where individual syn-
thesis parameters may be difficult to manually parametrise. Instead, we will exploit
the “mapping by demonstration” paradigm where the ML algorithm will create a
model whereby performance input is translated to synthesis output. In this regard,
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a difficult to programme synthesis method like Frequency Modulation could be a
good candidate.

Here we present two approaches from our work to demonstrate how regression
can work with different levels of complexity of sound synthesis. We show a simple
granular synthesiser, and a more sophisticated synthesis using corpus-based concate-
native synthesis [57].

27.5.1 Granular Synthesis and Sound Tracing

We created a basic granular synthesis module using the in-built capabilities of a
sample buffer reader in Max [58], groove ™. The implementation is a time domain
sample-based synthesiser where an audio buffer contains the sample being played,
and pitch transposition and playback speed are decoupled. This is combined with
subtractive synthesis with a classic resonant low-pass filter. There are six control
parameters:

— playback start time

— playback duration

— playback speed

— pitch shift

— filter cutoff frequency
— filter resonance.

A version of this synthesiser is available as part of the GIMLeT example of a
synthesiser where the sound authoring parameters are human readable and where
parametrisation could be done by hand. The challenge comes in creating sounds
that dynamically respond to incoming gestures without hardwiring gestural features
to synthesis parameters in a traditional mapping exercise. Here we use sound trac-
ing [59] as a method where a sound is given as a stimulus to create evoked gestural
response. By gesticulating to a sound that evolves in time, we author gesture that then
becomes training data for the regression algorithm in a “mapping-by-demonstration”
workflow. In order to author time varying sound using this synthesiser, we create a
system of “anchor points”, salient points in the timbral evolution of the sound that
are practical for sound synthesis parametrisation, and useful in pose-based gesture
training [20]. The synthesiser is controlled by our breakpoint envelope-based play-
back system and enables the user to design sounds that transition between four fixed
anchor points (start, two intermediate points, and end) that represent fixed synthe-
sis parameters. The envelope interpolates between these fixed points. The temporal
evolution of sound is captured as different states in the breakpoint editor whose
envelopes run during playback, feeding both synthesiser and the ML algorithm. Any
of the synthesis parameters can be assigned to breakpoint envelopes to be controlled
during playback.

These sound trajectories are then reproduced during the gesture design and model
training phases of our workflow. In performance a model maps sensor data to syn-
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Table 27.1 Audio feature
vector for corpus based
concatenative synthesis

Sound Features
Duration
Frequency u
Frequency o
Energy
Energy o
Periodicity u
Periodicity o
ACI p

ACl o
Loudness u
Loudness o
Centroid
Centroid o
Spread
Spread o
Skewness
Skewness o
Kurtosis

Kurtosis o

thesis parameters, allowing users to reproduce the designed sounds or explore the
sonic space around the existing sounds.

27.5.2 Corpus-Based Synthesis and Feature Mapping

Corpus-based concatenative synthesis (CBCS) is a compelling means to create new
sounds based on navigating a timbral feature space. In its use of atomic source units
that are analysed, we can think of CBCS as an extension of granular synthesis that
harnesses the power of music information retrieval and the timbral descriptors they
generate. The actual sound to be played is specified by a target and features associated
with that target.

A sound file is imported into the synthesiser, and it is automatically segmented
into units, determined by an onset segmentation algorithm. A vector of 19 auditory
features, shown in Table27.1, are analysed for each unit. Playback typically takes
place as navigation in the audio feature space. A set of desired features is given to the
synthesiser, and a k-nearest neighbours algorithm retrieves the closest matching unit
to a given set of auditory features. This synthesis method, therefore, is not one where
the user programmes sound by setting synthesis parameters in a deterministic way.
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Schwarz typically uses CataRT [60] controlled through a 2D GUI in live performance,
which enables control of only two target audio features at a time.

Here, the full vector of all auditory features are associated with with the sensor
feature vectors to train the neural network, and roughly represent a high-dimensional
timbral similarity space. We refer to this as multidimensional feature mapping, that
is to say, that a gesture-sound mapping is created in the feature domain.

The high dimensionality of gesture and sound feature spaces raises challenges
that ML techniques have helped to tackle. However, this complexity also offers
opportunities for experimentation. This led us to develop an extension to the IML
paradigm that allows to explore the vast space of possible gesture-sound mappings
with the help of an artificial agent and RL.

27.6 Reinforcement Learning

RL is an area of ML in which algorithms in the form of artificial agents are pro-
grammed to take actions in an environment defined by a set of parameters. Their goal
is to maximise the positive feedback—or rewards—they are given by a human (or by
another algorithm) observing the outcome of their actions. Deep RL approaches—
such as the Deep TAMER algorithm—Ieverage the power of deep neural networks
and human-provided feedback to train agents able to perform complex tasks [61].
Scurto et al. [62] implemented the Deep TAMER algorithm to design artificial agents
that allow to interactively explore the parameter spaces of software synthesisers.

We have developed a system that makes use of Deep RL to explore different
mappings between motion tracking and a sound synthesis engine [47]. The user
can give positive or negative feedback to the agent about the proposed mapping
whilst playing with a gestural interface, and try new mappings on the fly. The design
approach adopted is inspired by the ideas established by the IML paradigm (which
we schematised in Fig.27.1), as well as by the use of artificial agents in computer
music for exploring complex parameter spaces [63—65]. We call this interaction
design approach Assisted Interactive Machine Learning (AIML).

27.6.1 RL for Exploring Gesture-Sound Mappings: Assisted
Interactive Machine Learning

An AIML system is designed to interactively explore the motion-sound mappings
proposed by an artificial agent following the feedback given by the performer. This
iterative collaboration can be summarised in four main steps:

1. Sound design: the user authors a number of sounds by editing a set of salient
synthesis parameters;
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2. Agent exploration: the agent proposes a new mapping between the signals of the
input device and the synthesis parameters based on previous feedback given by
the user;

3. Play: the user plays with the synthesiser using the input device and the mapping
proposed by the agent;

4. Human feedback: the user gives feedback to the agent.

In step 2, the agent creates a new mapping based on user feedback. If no feedback
was previously given, the agent starts with a random mapping. Steps 3 and 4 are
repeated until the user has found as many interesting motion-sound mappings as
they like. The following subsections will describe the system architecture and a
typical workflow.

It is worth noting that, differently from most IML applications for gestural inter-
action, there is not a gesture design step during which the performer records some
sample sensor data for training the system. This is perhaps one of the most obvi-
ous differences between the IML and AIML paradigms. In an AIML workflow, the
sample sensor data used for training the model is provided by the artificial agent,
whereas the user gives feedback to the agent interactively whilst playing the resulting
gesture-sound mappings.

27.6.2 AIML System Architecture

The architecture of the system is schematised in Fig. 27.2. Motion features are stored
in a vector and sent to a regression model created using a neural network. This
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Fig.27.3 The prototypical assisted interactive machine learning workflow

was implemented in Max using the rapidmax object [66], an external built using
RapidLib [67, 68], a set of software libraries for IML applications in the style of
Wekinator [69]. These features also represent the dimensions of the environment
in which the artificial agent operates. By exploring this feature space following the
user’s feedback, the agent proposes a set of motion features to be paired with the
synthesis parameters defined by the user during the sound design step. This becomes
the dataset used to train the neural network. The resulting regression model maps
the incoming sensor data to sound synthesis parameters.

27.6.3 AIML Workflow

The four main steps of the interactive collaboration between the human performer
and the artificial agent are schematised in Fig.27.3.

1. Sound design In this first step, the user defines a number of sounds by manipulating
a set of synthesis parameters. This process may differ depending on the synthesiser
chosen and which synthesis parameters are exposed to the user in this step. In the first
version of the system using the sample-based synthesiser described in Sect.27.5.1,
the sounds are defined by manipulating six parameters (playback speed, pitch shift,
start time, duration of the sample selection, filter cutoff frequency, and resonance).
Here, the user defines the parameters of four sounds that will be used to train a neural
network in step 2 and perform regression in step 3. The sounds designed in the sound
design step will thus act as timbral anchor points that define a space for interpolation
and extrapolation of new sounds.
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2. Agent exploration The dimensions of the environment explored by the agent are
defined by the motion features extracted from the raw sensor data for each of the
sounds presets. Thus, at the end of the exploration step, the agent returns a vector
with a set of input features for each of the sound synthesis parameters sets defined in
the sound design step. This means that in the case of the version of the system using a
2D accelerometer, the agent will return four 2D vectors. These will be automatically
paired with the synthesis parameters to train a neural network and create a regression
model, which will be used in the following step to map live incoming sensor data to
sound synthesis.

3. Play In this step, the user is free to play with and explore the resulting gesture-sound
mapping for, however, long they like. Given that the regression models allow both
interpolation and extrapolation of the input sound synthesis data, this step also allows
to explore the timbral possibilities of the synthesiser whilst playing the mapping.

4. Human feedback After playing with the mapping, the user gives feedback to the
artificial agent through a purposely designed interface. We adopted the concepts of
guiding feedback and zone feedback implemented in the agent designed by Scurto
et al. [62]. Guiding feedback is a binary evaluation of the actions performed by
the agent, or the direction of its exploration of the feature space. Zone feedback is
instead an evaluation of the area of the feature space the agent is currently exploring.
For example, a negative guiding feedback would change the direction of the agent’s
trajectory in the feature space, whereas a negative zone feedback would immediately
transfer the agent to a different region of the space.

In our system, the user can give positive or negative guiding feedback to the
agent about the proposed mapping. This feedback guides the direction of the next
explorations of the feature space, and thus affects the next mappings proposed by
the agent. In addition, the user can tell the agent to move to a different area of the
feature space by means of a negative zone feedback. This will likely result in a new
mapping thatis considerably different from the previous one. In practice, this could be
useful for trying something new once one is satisfied with the mappings proposed by
the agent after a few guiding feedback iterations. In fact, whereas negative guiding
feedback results in adjustments to the mappings currently being proposed by the
agent, negative zone feedback triggers the exploration of a new area of the feature
space, thereby exploring new mapping possibilities. Finally, users can save mappings,
which can be retrieved later for performance or as material to be further refined using
other interaction design approaches.

27.7 In Practice: IML Techniques in Musical Pieces

The sections that follow will describe how the techniques we outlined so far were
employed by the authors for the development of their own musical pieces. The four
pieces we selected showcase how these methods may be deployed to aid certain
expressive intentions. Through their use in artistic practice, some of the creative
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affordances of IML paradigms become clearer, showing how certain creative pro-
cesses may be facilitated and exposing strength and limitations of specific techniques.

27.7.1 Wais (Tanaka)

Wais (2019) is an homage to Michel Waisvisz, his work at the studio STEIM in
Amsterdam, and his performances on the instrument, The Hands. On one arm a short
recording of a Waisvisz performance is articulated. On the other, an electronic music
track, Delull by Tanaka. These two sources are granulated and placed in counterpoint.
Two neural networks create independent regression models associating static posture
and sound grain for each source. Once in “test” mode, these models take dynamic
gestures, deconstructing the two prior works into a single improvisation.

Gesture is captured by one Myo sensor armband [70] on each forearm, providing
8 EMG channels, IMU quaternions, and combinatorial features resulting in 19 total
muscle tension and movement features each from the left and right arms. An instance
of the synthesiser described in Sect.27.5.1 is associated with each sensor armband,
allowing an independent sound buffer to be articulated by each arm.

The gesture input and sound synthesis output are associated by means of a neural
network regression algorithm (see Sect.27.4.2), one for each arm. The performance
consists of three sections, first to audition the unaltered source samples, second to
train the neural network, and third to explore the trained model. At the beginning of
the performance, the regression models are empty. The source sounds are played from
the beginning, going up to 5 min for Tanaka’s recording and 19 s looped of Waisvisz’s
recording. The overall summed RMS muscle tension for each arm initially modulates
the amplitude of each recording, allowing the two musical voices to be articulated in
a direct, gross manner. This section familiarises the listener with the original source
materials.

In section two, a series of four granular regions and filter settings for each voice
are associated with four static postures for each arm, with the gesture input recorded
to establish a training set. This is done in performance as a sequence of events to
set the synths to each precomposed sound and prompt the performer to adopt a pose
for each. The overall amplitude continues to be modulated by the summed muscle
RMS. So, whilst each posture for the training set is static, the music continues
to be articulated in a continuous manner through muscle tension. This creates a
continuation of the first section where four segments of each voice are chosen as a
way to zoom into segments of the original recordings. The eight segments are called
up in an alternating manner for each arm through rhythmic timing aided by a foot
pedal push button to advancing and promoting the performer to each subsequent pose.
After the training set of example poses and associated target sounds are recorded,
the two neural networks are trained to produce a regression model.

The regression model is put into test mode for the third section of the piece and
all three components of the work—38 total dimensions of gesture, the two neu-
ral networks, and 12 total dimensions of sound synthesis output—come to life in
dynamic interplay. The performer explores the gesture-sound space through contin-
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uous movement. He may approach or go through the poses from the training to see if
the precomposed segments are recalled. He may explore multimodal decomposition
and recombining of the source poses, perhaps striking a posture from one pose in
space to recall IMU data for that pose, combined with muscle tension from another
pose. This exploration is fluid, comprised of continuous gesture that dynamically
goes in-between and beyond the input points from the training set. The result is a
lively exchange of the two musical voices, with the granular synthesis and filters con-
stantly shifting in ways unlikely to be possible with manual parameter manipulation
or direct mapping.

27.7.2 11 Degrees of Dependence (Visi)

11 Degrees of Dependence (2016) is a composition for saxophone, electric guitar,
wearable sensors, and live electronics that makes use of ML for continuously map-
ping the movements of the musicians to sound synthesis based on physical models
and granular synthesis. The piece explores the relationship between the performers
and their instruments, focusing on the constraints that instrumental practice imposes
on body movement and a topological interpretation of the musician’s kinesphere [71].
The score includes symbols to notate movements, designed to be easily interpreted
by musicians familiar with standard notation.

The piece is a duet for alto or soprano sax and electric guitar tuned in Drop C
(open strings tuned CGCFAD from low to high). The sax player and the guitarist each
wear two Myo armbands to control the physical model whereas the guitarist wears the
same devices to control granular synthesis and an electroacoustic resonator placed
on the guitar headstock. Parameter mapping is done using a supervised learning
workflow based on SVMs. The data from the lateral (pitch) and longitudinal (roll)
axes of the magnetometer are used as input to train the ML model. Four ‘postures’
are then defined for both musicians. In the case of the sax player, these are:

— a ‘default’ performance position (named ‘Rest’) with arms comfortably by the side
of the chest,

— gently leaning back, raising the saxophone with the elbows slightly open (named
‘Open’),

— leaning to the left with the right elbow slightly pointing outwards (named ‘Left’),

— leaning to the right with the left elbow slightly pointing outwards (named ‘Right’).

During the training phase, each posture is coupled with a set of synthesis param-
eters of the flute physical model. The Rest posture is paired with a clean sound with
a clear fundamental frequency, the Open posture with a louder sound rich of breath
noise, the Left posture adds overtones, and the right posture with a flutter tongued
“frullato’ sound. In performance (testing phase, in ML terms), the synthesis param-
eters are continuously interpolated using the output likelihoods of the classifier as
interpolation factors. This synthesised wind instrument sounds are designed to blend
with the saxophone sound to generate a timbre with both familiar and uncanny qual-
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ities. The pitch played by the flute model is a C1, which is also the tonic of the piece.
The amount of noise fed into the physical model (or breath pressure) is controlled
by the sum of the EMG MAV values of both arms. This implies that the amount
of synthesised sound is constrained by the movement of the fingers operating the
saxophone keys. Notes that require more tone holes to be closed—such as low notes
for example—cause more muscular activity and thus louder sounds from the physi-
cal model. This design choice adds a component of interdependent, semi-conscious
control to the performance creating a tighter coupling between the sounds of the
saxophone and those of the flute model.

11 Degrees of Dependence is structured in 3 parts, each of which contains scored
themes at the beginning and the end a middle improvised section. The full score of
the alto saxophone part can be found in the appendix of [72]. The score adopts con-
ventional notation along with some custom symbols (printed in red) used to notate
movement. Whilst the symbols indicate at which point in time the posture should
be reached, the red lines show how the transition between the different postures
should be articulated. These lines resemble other lines commonly found in conven-
tional music notation. A straight line between two symbols means that the performer
should start from the posture represented by the first symbol and progressively move
towards the posture represented by the second symbol. The movement resulting from
the transition between the postures should end in correspondence with the second
symbol, thus following the rhythmic subdivision indicated in the staff. This is similar
to a glissando, also notated using straight lines between note heads. A curved line
between the posture symbols works instead analogously to a legato, meaning that
the indicated posture is quickly tied with the following one. The score is where affor-
dances and constraints of the agencies involved in the piece coalesce: each posture
is represented by a symbol and corresponds to a class of the ML classifier, body
movements occur in-between postures, causing sound synthesis to move in-between
predefined parameter sets. At the centre of these interdependent agencies, we find
the bodies of the musicians and their embodied relationships with their instruments.

27.7.3 Delearning (Tanaka)

Delearning (2019) takes as its source a work by Tanaka for chamber orchestra, DSCP,
as sound corpus for analysis and subsequent neural network regression with gestural
input. Feature extraction of arm poses is associated with audio metadata and used to
train an artificial neural network. The algorithm is then put into performance mode
allowing the performer to navigate a multidimensional timbre space with musical
gesture.

This piece puts into practice the technique we describe in Zbyszynski et al. [21],
where multimodal EMG and IMU sensing is used in conjunction with corpus-based
concatenative sound synthesis (CBCS) to map 19 dimensions of incoming gesture
features by a regression model to 19 dimensions of audio descriptors.

The nineteen gesture features are taken from the right forearm and are: IMU quater-
nions (4 dimensions), angular velocity (4 dimensions), 8 channels of Bayes filtered
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EMG, total summed EMG (1 dimension), and a separation of all EMG channels on
the perimeter of the forearm to horizontal and vertical tension (2 dimensions).

The nineteen target audio descriptors are grain duration followed by the means
and standard deviations of frequency; energy; periodicity; autocorrelation coefficient;
loudness; spectral centroid, spread, skew and kurtosis.

The gesture input feature space is mapped to the target audio feature space by
means of a neural network that creates a regression model associating gesture as
performed and sound synthesis output.

The source audio is a recording of an 18 minute piece for chamber orchestra
of mixed forces. The work was chosen as it contains a diverse range of timbres and
dynamics all whilst being musically coherent. Before the performance, the recording
is analysed to generate the audio descriptors. The recording is read from beginning to
end and is segmented by transient onset detection into grains. This generates 21,000
grains over the course of the duration of the recording, making the average grain 50
ms in duration.

The composition consists of five points in the original piece that have been selected
to be associated with performance postures. The EMG and IMU sensors on the right
arm feed the neural network, whilst EMG amplitude from the left arm modulates the
overall synthesiser amplitude, and IMU quaternions modulate, at different points in
the composition, filtering and spatialisation.

The performance begins with the analysed recording, but with an empty regression
model. The first grain is heard, and the performer adopts a posture to associate with
it, and records that as training data into the neural network. This continues for the
two subsequent grains, at which point the training set consists of gesture features of
the three poses associated with the audio descriptors of the three grains. The neural
network is trained, then put into test mode. The performer then explores this gesture-
timbre space through fluid, dynamic gesture. The regression model takes gesture
feature input to report a set of audio descriptors to the synthesiser. The synthesiser
applies a k-nearest neighbour algorithm to find a grain in the corpus that has the
closest Euclidean distance to the look up features.

In the next section of the piece, the neural network is put back into training
mode, and a fourth grain is introduced and associated with a fourth posture. This
pose is recorded as an extension to the existing training set, putting in practice the
IML paradigm of providing more examples. The neural network is retrained on this
enhanced data set and put in performance mode for further free exploration by the
performer.

This is repeated with the fifth and final grain to extend the regression model one
last time to model the data representing 5 poses associated with five audio grains.
This creates a musical structure where the gesture-timbre space becomes richer and
more densely populated through the development of the piece.
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27.7.4 “You Have a New Memory” (Visi)

“You Have a New Memory” (2020) [73] makes use of the AIML interaction paradigm
(see Sect. 27.6) to navigate a vast corpus of audio material harvested from the messag-
ing applications, videos, and audio journals recorded on the author’s mobile phone.
This corpus of sonic memories is then organised using audio descriptors and nav-
igated with the aid of an artificial agent and RL. Feedback to the agent is given
through a remote control, whilst embodied interaction with the corpus is enabled by
a Myo armband.

Sonic interaction is implemented using CBCS (see Sect.27.5.2). The approach is
further refined by adopting the method based on self-organising maps proposed by
Margraf [74], which helps handling the sparseness of heterogenous audio corpora.

In performance, the assisted exploration of sonic memories involves an embodied
exploration of the corpus the entails both a search of musical motives and timbres
to develop gestural musical phrases, as well as the intimate, personal exploration of
the performer’s recent past through fragments of sonic memories emerging from the
corpus following the interaction with the agent. The juxtaposition of sounds that are
associated with memories from different periods may guide the performer towards
an unexpected introspective listening that co-inhabits the performance together with
a more abstract, sonic object-oriented reduced listening [14]. The shifting between
these modalities of listening influences the feedback given to the agent, which in
return alters the way the performer interacts with the sonic memories stored in the
corpus.

The title of the piece—*“You Have a New Memory”—refers to the notifications that
a popular photo library application occasionally send to mobile devices to prompt
their users to check an algorithmically generated photo gallery that collects images
and videos related to a particular event or series of events in their lives. These
collections are ostensibly compiled by algorithms that extract and analyse image
features, metadata (e.g. geotags), and attempt to identify the people portrayed in the
photos [75].

The piece aims at dealing with the feelings of anxiety associated with the aware-
ness that fragments of one’s life are constantly turned (consciously or not) into data
that is analysed and processed by unattended algorithms, whose inner workings and
purposes are often opaque. The piece then is also an attempt at actively employing
similar algorithms as a means of introspection and exploration. Rather than passively
receiving the output of ML algorithms dictating when and how one’s memories are
forming, here the algorithms are used actively, as an empowering tool for exploring
the complexity outlined by the overwhelming amount of data about ourselves that
we constantly produce.
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27.8 Conclusion

The purpose of this chapter was to provide an overview of the solutions, challenges,
needs, and implications of employing IML techniques for analysing and designing
musical gestures. The research field is still rapidly developing, and the topics we
touched upon in the previous sections may give an idea of the interdisciplinary effort
required for advancing research further. Advances in the field require an interdisci-
plinary perspective as well as a methodology encompassing basic research inquiry,
the development of tools, their deployment in artistic practice and an analysis of the
impact such techniques have on one’s creative process. Learning more about the use
of ML in music has manifold implications, stretching beyond the musical domain.
As ML technologies are used to manage more and more aspects of everyday life,
working along the fuzzy edges of artistic practice—where tasks are often not defined
in univocal terms and problems are, and need to be left, open to creative solutions—
becomes a laboratory in which we understand how to claim and negotiate human
agency over data systems and algorithms. Understanding ML as a tool for navigating
complexity that can aid musicians’ creative practice may contribute to the advance-
ment of these techniques, as well as to their demystification and broader adoption by
artists, researchers as well as educators, thereby becoming sources of empowerment
and inspiration.
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