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Musical performance is a multimodal experience, for performers and listeners alike. This 

paper reports on a pilot study which constitutes the first step toward a comprehensive 

approach to the experience of music as performed. We aim at bridging the gap between 

qualitative and quantitative approaches, by combining methods for data collection. The 

purpose is to build a data corpus containing multimodal measures linked to high-level 

subjective observations. This will allow for a systematic inclusion of the knowledge of music 

professionals in an analytic framework, which synthesizes methods across established 

research disciplines. We outline the methods we are currently developing for the creation 

of a multimodal data corpus dedicated to the analysis and exploration of instrumental music 

performance from the perspective of embodied music cognition. This will enable the study 

of the multiple facets of instrumental music performance in great detail, as well as lead to 

the development of music creation techniques that take advantage of the cross-modal 

relationships and higher-level qualities emerging from the analysis of this multi-layered, 

multimodal corpus. The results of the pilot project suggest that qualitative analysis through 

stimulated recall is an efficient method for generating higher-level understandings of musical 

performance. Furthermore, the results indicate several directions for further development, 

regarding observational movement analysis, and computational analysis of coarticulation, 

chunking, and movement qualities in musical performance. We argue that the development 

of methods for combining qualitative and quantitative data are required to fully understand 

expressive musical performance, especially in a broader scenario in which arts, humanities, 

and science are increasingly entangled. The future work in the project will therefore entail 

an increasingly multimodal analysis, aiming to become as holistic as is music in performance.

Keywords: embodied music cognition, movement analysis, chunking, stimulated recall, coarticulation, 

expressive music performance, multimodal analysis

INTRODUCTION

This paper discusses method development for multimodal research on expressive music 

performance. We  report on a pilot study, carried out by Gesture Embodiment and Machines 

in Music (GEMM), a cross-disciplinary research cluster, together with members of the Norrbotten 
NEO1 – a professional contemporary music ensemble, part of the research environment at the 

Luleå University of Technology. The study constitutes the first step in the development of a 

1 https://norrbottensmusiken.se
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comprehensive approach to the understanding of music 

performance as a multimodal experience. We  aim at bridging 

the gap between qualitative and quantitative approaches by 

combining methods for data collection, with the purpose of 

building a data corpus containing multimodal measures linked 

to high-level subjective observations. This will allow for a 

systematic inclusion of the knowledge of music professionals 

in an analytic framework, which synthesizes methods across 

established research disciplines. As proposed by Lesaffre and 

Leman (2020, p. 3) such interdisciplinary entanglements between 

arts, humanities, and science demand a coupling requiring 

“open flows of information, which copes with important 

transformations regarding how science works, as well as how 

companies and societies innovate.” Along these lines, the presence 

of Norrbotten NEO in the heart of the research cluster represents 

a novel potential but also poses central questions regarding 

the development of methods for multimodal research on 

expressive music performance. The shift toward a true 

entanglement of arts and science demands new forms for 

qualitative data collection. In this paper, we  report on the 

initial explorations of how professional musicians can obtain 

an integrated role in the generation of several layers of qualitative 

data, and we  consider how such materials can be  further 

analyzed through the use of quantitative methods.

In the remaining subsections of the introduction, we provide 

a theoretical background to the research. In section Qualitative 

Analysis, we  outline the forms of qualitative analysis applied 

in the study. In section Quantitative Analysis, we  provide a 

brief backdrop of the quantitative analysis of body movement 

in musical performance research. In section Knowledge Gaps, 

we  identify the knowledge gaps that the pilot study seeks to 

address. The design of the pilot study is described in section 

Design of the Pilot Study. Section Results of the Pilot Study 

presents the results of the pilot study starting with the quantitative 

data in section Identification and Extraction of Relevant Features. 

While the quantitative findings are limited, in section First-

Person Observations and Cross-Comparison of Data we  give 

a more substantial account of qualitative findings in the study 

and suggest some multimodal findings enabled by combining 

different modalities in the data. Finally, section Discussion 

and Future Work holds a discussion of these preliminary 

findings in the pilot study and how these may be taken further 

in future work.

Music Performance and Embodied 
Cognition
The notion of embodiment entails a phenomenological and 

biological grounding of human cognition and experience of 

the world in action (Clayton and Leante, 2013). This perspective 

has notably shifted scholarly understandings of musical perception.

According to the theory of embodied cognition, the 

sensorimotor system is central to all human thought-processes, 

which are “a product of the activity and situations in which 

they are produced” (Brown et  al., 1989, p.  33). Thelen et  al. 

(2001, p.  1) define embodied cognition as dependent on “the 

kinds of experiences that come from having a body with 

particular perceptual and motor capacities that are inseparably 

linked and that together form the matrix within which memory, 

emotion, language and all other aspects of life are meshed.” 

A fundamental aspect of these “perceptual and motor capacities” 

is discussed in neuroscience as the coupling of action and 

perception. Leman describes this coupling as the interaction 

between mechanisms taking place in different layers of the 

body (Leman, 2012). The body image may be  thought of as 

the explicit understanding that we  have of our own bodies. 

It is an intentional state made up of several modalities: perceptual 

experiences of one’s own body; conceptual understandings of 

the body in general; emotional attitudes toward one’s own 

body (De Preester, 2007). At the level of body image, performative 

knowledge may be accessible through introspection and reflexive 

research methods, such as is common in autobiographical forms 

of artistic research. The body schema, on the other hand, 

involves “a system of motor capacities, abilities, and habits” 

(Gallagher and Cole, 1995) which operate largely subconsciously 

and constitute the greater part of what we  may conceive of 

as a performer’s habitus. Gibson’s concept of affordances assumes 

a similar link between action and perception (Gibson, 1986). 

Taking the example of a musician, an instrument affords different 

musical possibilities to different performers; hence, the 

affordances of an instrument are as dependent on the individual 

performer as on the properties of the instrument.

Motor Control in Music Performance
Learning and performing skilled movement tasks, such as 

playing a musical instrument, involves highly advanced 

sensorimotor control (Altenmüller, 2008). This includes sensory 

processing through proprioception, and the tactile, vestibular, 

visual, as well as, of course, the auditory systems. Human 

perception, through these sensory processes and the central 

nervous system (CNS), embraces both conscious and unconscious 

awareness of body position and movements, as well as of the 

task performance and the environment. Via feedback (reactive) 

and feedforward (anticipatory) control mechanisms, the CNS 

creates coordinated motor commands for well-adapted muscle 

activation (Franklin and Wolpert, 2011). Due to the time delay 

of sensory feedback, the CNS also uses an efference copy of 

the motor command in skilled fast movement performances. 

This efference copy is used to predict the results of the movement, 

already before sensory feedback has reached the CNS, and 

thereby allow for rapid actions and reactions needed in skilled 

motor tasks. The efference copy is also integrated with the 

sensory feedback, as a Kalman filter, to increase the accuracy 

of the estimation of the state of the body (Franklin and Wolpert, 

2011). In well-coordinated movements, muscles, or part of 

muscles are either activated or inhibited in patterns of co-variation 

via neural motor commands from CNS, in order to skillfully 

achieve the desired goal of the task (Latash et  al., 2007). 

Similarly, musical performance inherently involves well-adapted 

somatosensory synchronization (Repp and Su, 2013).

Skillful movements can be defined as the ability to accurately 

achieve the goal of a given motor task (i.e., accuracy), consistently 

during a high ratio of trials (i.e., with consistency or precision), 
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and with an economy of effort (i.e., efficiency). This can, 

moreover, be  achieved in various current and future contexts 

and environments (i.e., flexibility) and in relation to the 

individual’s capabilities and resources to effectively solve the 

motor task (Higgins, 1991). Skillful movements are achieved 

by adaptation and learning. Several classifications of the different 

learning phases have been proposed. A common classification 

includes three stages: (1) cognitive, (2) fixation, and (3) 

autonomous stages (Schmidt et  al., 2018). In the first cognitive 

stage, the person has to solve what actions to take to achieve 

the goal. Various strategies are tried, where effective strategies 

are retained and ineffective strategies are discarded, and the 

performance is usually very inconsistent. The second fixation 

stage begins when the person has determined the most effective 

way of doing the task and starts to make smaller adjustments 

in how it is performed. Movement performance becomes more 

consistent. The third autonomous stage enters after a long 

time of practice. The skill can now be performed automatically 

without interference from other activities and simultaneous 

tasks, e.g., sight-reading while playing the clarinet a prima vista.

Coarticulation, Chunking, and 
Segmentation in Music Performance
Theories of coarticulation, as a fundamental feature of human 

perception and production of speech, builds on the further 

observation of how language is made up of smaller components 

such as from word, to morpheme, to phoneme (Kühnert and 

Nolan, 1999). Hence, coarticulation conceptualizes how such 

components are woven together in the performance of language. 

The origin of coarticulation in the language is grounded in 

our embodiment: “The vocal tract is governed by the laws of 

physics and the constraints of physiology, but (also unlike the 

typewriter) it is producing its communicative artefact in ‘real 

time.’ It cannot move instantaneously from one target 

configuration to the next” (Kühnert and Nolan, 1999, p.  8, 9). 

Coarticulation is the result of the particular affordances of 

the vocal apparatus, which entails making a graceful movement 

from one phoneme to the next while projecting to the listener 

a coherent whole.

Similar processes of perceptual meaning formation have 

been observed in musical performance (sound-producing action) 

and perception (Godøy, 2014). Human perception of music 

builds on our ability for “chunking” audio signal in smaller 

units, on the level of phrase and sub-phrase (Godøy et  al., 

2010), but also, to weave these together into larger chunks 

through contextual smearing (Godøy, 2014). Coarticulation can 

be  observed on different time scales. Many studies of 

coarticulation in music performance have focussed on what 

may be described as the prefix and suffix to a sound-producing 

action (see further Godøy, 2008), and hence, looking more at 

the anticipation of finger movement, for instance in piano 

playing (Engel et  al., 1997). But coarticulation also plays an 

important role in the shaping of longer phrases and is reflected 

also in the temporal and spatial coarticulation of actions in 

multiple body parts. The identification of musical “goal-points” 

is, according to Godøy (2014, p.  540) based on “combined 

biomechanical, motor control, and perceptual constraints” and 

gives us intrinsic and “natural” criteria for chunking continuous 

streams of sound and gestures into meaningful units. Further, 

for Godøy (2006, p.  149), the theory of embodied music 

cognition suggests that these perceptual objects are not stored 

as “sound objects”; rather, he  argues that “we actually recode 

musical sound into multimodal gestural-sonorous images based 

on biomechanical constraints (what we  imagine our bodies 

can do), hence into images that also have visual (kinematic) 

and motor (effort, proprioceptive, etc.) components.” For instance, 

Godøy turns to Schaeffer’s observation of basic envelopes 

(dynamic shapes) of sound objects – impulsive, sustained, and 

iterative – and notes that these sound objects also have 

corresponding gestural types in the action of the performer. 

We  found these observations of basic types of gestural sonic 

objects to be  an important reference in the development of 

a multimodal framework for the analysis of music performance 

(see further below regarding the application of Laban Movement 

analysis (LMA) in the analysis of movement qualities in 

musical performance).

Multimodal Music Representation and 
Analysis
Since multimodality has been identified as a central quality 

of musical experience, it is worth unpacking the term further. 

The word “multimodal” is used in various contexts. In 

psychology, neuroscience, and related disciplines, “modality” 

refers to a human sensory channel, and therefore the perception 

of stimuli that involve multisensory integration is referred to 

as “multimodal” (Small and Prescott, 2005). In music information 

retrieval (MIR) a “modality” is a source of musical information, 

such as audio, score, lyrics, video of a performance, etc. Thus, 

approaches that use multiple sources to represent and retrieve 

musical content are referred to as “multimodal” (Schedl et al., 

2014). In human-computer interaction (HCI), multimodality 

occurs when the interaction between a user and a computer 

uses multiple means of input and output, e.g., speech 

recognition, touch, motion sensing, auditory feedback, etc. 

(Weiss et al., 2017). The definition of “multimodal” thus varies 

to some extent depending on the context in which the word 

is used. Yet, it essentially points to the experience or 

representation of something by means of multiple sources of 

heterogeneous nature.

A multimodal representation of a piece of music can contain 

several synchronized layers such as audio, symbolic representations 

(score, MIDI), and audio descriptors (Briot et al., 2020); videos 

of the performance, physiological and motion data describing 

the performers’ movements; and semantic labeling and 

annotations describing expressivity and other high-level qualities 

of the music (Coorevits et  al., 2016). The data contained in 

these concurrent layers can be  used to individuate segments 

in the music, that is, parts that form its structural and temporal 

unfolding across multiple modalities. Different approaches to 

segmentation can help singling out and analyzing various musical 

elements: from single notes and acoustic components to phrases, 

gestures, chunks, and multimodal units of musical meaning 
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such as gestural sonic objects (Godøy, 2018). Criteria for 

segmentation using quantitative data include onset detection 

in audio signals (Bello et  al., 2005) or in physiological signals 

describing muscle activation (Solnik et  al., 2008), and analysis 

of motion data for repetitive pattern detection and semantic 

clustering (Krüger et  al., 2017). Qualitative approaches to 

segmentation include performer’s analysis of the score for the 

identifications of chunks (Östersjö, 2016) as well as observational 

analysis of video data through the use of open coding and 

stimulated recall (Coorevits et  al., 2016). Through multimodal 

integration techniques – also known as multimodal fusion – 

processed audio, video, motion, and physiological signals can 

be  further combined with symbolic and qualitative data in 

order to detect events useful for the analysis of musical content 

(Essid and Richard, 2012). These techniques are central for 

the development of machine learning models able to process 

and relate data from multiple modalities, and thereby gain an 

in-depth understanding of complex phenomena that humans 

experience multimodally (Baltrusaitis et  al., 2019). Particularly, 

such techniques are said to have considerable advantages over 

unimodal ones for the analysis of music, as several music 

processing tasks – including similarity computation, classification 

in high-level categories describing emotion or expressivity, 

structural segmentation, and others – can benefit profoundly 

from multimodal approaches (Simonetta et  al., 2019).

With the increasing availability of music as digital data, 

and the development of more sophisticated computational 

techniques to process, analyze, and generate such data, music 

researchers have adopted interdisciplinary approaches centered 

on the manipulation of data corpora. In outlining what constitutes 

a corpus in practical terms Tremblay et  al. (2019, ibid., p.  1) 

point out that sound corpora are different from any collection 

of recorded sound, as the former are “something that musicians 

have settled down to explore” at various timescales, from atomic 

particles of sound to longer sections characterized by specific 

salient features. They thereby suggest that a key step for the 

preparation and exploration of a corpus is its decomposition 

in smaller entities such as slices (the product of segmentation 

in a single dimension, usually time), layers (concurring entities 

that form musical sound), or objects. This last category is 

more loosely defined, as it refers to a portion of corpus 

determined by an arbitrary set of morphological characteristics. 

Analysis of multimodal corpora has been employed for studying 

several aspects of embodied expressive performance, including 

interactive postural analysis of violin players (Volta and Volpe, 

2019), embodied interaction between humans in virtual 

environments (Essid et  al., 2012), and expressive movement 

qualities in dance (Piana et  al., 2016a).

In giving an overview of multimodal techniques for music 

content analysis, Essid and Richard (2012) distinguish between 

cross-modal processing and multimodal fusion. Cross-modal 

processing methods aim at characterizing the relationships 

between modalities. In a case study (Gulluni et  al., 2011), 

cross-modal processing is used for the analysis of electroacoustic 

music that cannot be  represented using conventional notation. 

After interviewing musicologists with expertise in electroacoustic 

music analysis, the authors propose an interactive method to 

help them decompose an electroacoustic piece into sonic objects 

and correlate qualitative annotations of sonic objects with audio 

data. Their system aids the analysis of a given piece by: 

segmenting it through onset detection; asking the musicologist 

to assess the segmentation and label the sonic objects they 

want to analyze; and training a classifier to spot instances of 

the sonic objects on the recording. Finally, the musicologist 

selects and validates the results of the analysis, repeating the 

interaction until they are satisfied with the results. This helps 

with analysis tasks such as finding all the instances of a specific 

sound object in the piece, some of which might be  difficult 

to hear as they might be  masked by other sounds. This is an 

example of third-person computer-aided qualitative analysis, 

where human observations are correlated with audio signals 

by means of machine learning algorithms. In other instances, 

cross-modal processing might be  aimed at correlating two 

different modalities such as the movement of performers and 

sound features (Caramiaux et  al., 2011; Nymoen et  al., 2013) 

or audio and video features (Gillet et  al., 2007).

Multimodal fusion methods instead aim at efficiently combining 

the data from different modalities into a common feature 

representation. This process is also known as early integration, 

as features from different modalities are integrated into a 

multimodal feature before analysis. A common approach for 

feature fusion is to use dimensionality reduction algorithms – such 

as Principal Component Analysis (PCA; Hotelling, 1933) and 

Self-Organizing Maps (SOM; Kohonen, 1982), which were 

also employed for the design of data-driven music systems 

for the interaction with sound corpora (Roma et  al., 2019). 

Moreover, research on multimodal machine learning (Baltrusaitis 

et  al., 2019) shows that models that can relate data from 

multiple modalities might allow to capture complementary 

information that is not visible in individual modalities on 

their own.

This delineates a scenario where computational music analysis 

can harness cross-modal processing and multimodal fusion 

methods to shift the focus toward the relationships that tie 

together different modalities in multimodal data corpora, 

thereby revealing the links between low-level features and 

high-level expressive qualities as well as giving a new insight 

of structural phenomena of music performance such as chunking 

and coarticulation.

MATERIALS AND METHODS

This section, structured in four parts, provides an outline of 

the state of the art in methods for research on music performance, 

with the aim of considering how current qualitative and 

quantitative approaches can be  combined in order to allow 

for multimodal data collection and analysis. We  further define 

the knowledge gaps and describe the design of the pilot study.

Qualitative Analysis
Qualitative analysis of musical performance demands a systematic 

approach to interpretative layers which can be  described from 
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first-, second-, or third-person perspectives. Our definition of 

these perspectives is closely related to those put forth by Leman 

(2008), but we  differ substantially in our definition of the 

third-person perspective. For Leman, this entails only data 

created through quantitative measurement (see e.g., Leman, 

2008, p.  80), while in the present study, qualitative data from 

a third-person perspective may be collected through observation, 

for instance, through video documentation.

Stimulated Recall
Stimulated recall is a common qualitative research method in 

education, medicine, and psychotherapy. Coined by Bloom 

(1953), the method was first tested in a study that used audio 

recordings of classroom teaching as stimuli to allow students 

to relive the original experience and give accounts of their 

original thought processes. In music research, early applications 

of a stimulated recall are found in studies of collaborative 

processes (Bastien and Hostager, 1988, 1992; Bastien and Rose, 

2014). The use of stimulated recall in the present study is a 

further development of methods developed in music research, 

drawing on gesture analysis as a component in the coding 

process, wherein the insider perspective of a performer has 

been essential (see further Coorevits et  al., 2016; Gorton and 

Östersjö, 2019; Östersjö, 2020). In their adaption of these 

methods for the purposes of a multimodal study of music 

performance, two procedures were important. First, that the 

video was coded by all four participating researchers, hereby 

aiming at creating an intersubjective understanding of the 

data – what Leman (2008) refers to as a second-person 

perspective – using open coding (see further below), and 

second, that descriptive analysis was added using more extensive 

verbal annotations. Through these steps, which were repeated 

several times, a structural analysis could be  drawn from the 

coding process, while a more in-depth set of first-person 

observations were captured through the annotations.

The present study emphasizes how each subject involved 

in a stimulated recall analysis will engage in the process by 

activating their listening habitus (Becker, 2010, p.  130), which 

entails “a disposition to listen with a certain kind of focus.” 

We  are interested in how each musician has been socialized 

into particular ways of listening, as well as into particular 

forms of performative interpretation of scored music.

Open Coding
Open coding is a basic procedure in grounded theory, wherein 

the aim is to generate “an emergent set of concepts and their 

properties that fit and work with relevancy to be  integrated 

into a theory” (Glaser, 2016, p.  109). Rather than starting the 

analysis from a predetermined theoretical grid, the aim of 

open coding is to let an analytical understanding emerge from 

the data. Through this process, “the researcher discovers, names, 

defines, and develops as many ideas and concepts as possible 

without concern for how they will ultimately be  used. How 

the issues and themes within the data relate must 

be  systematically assessed, but such relationships can 

be  discovered only once the multitude of ideas and concepts 

it holds have been uncovered. Turning data into concepts is 

the process of taking words or objects and attaching a label 

to them that represents an interpretation of them” (Benaquisto, 

2008, p.  581). However, although it is important to approach 

the data “in every possible way” (Glaser, 2016, p.  108), the 

openness at this stage is not without boundaries. It is also 

necessary to bear in mind what the study itself researches, 

and the aim is for the coding process to gradually delimit 

the scope so that the codes become more structural and 

less descriptive.

Laban Movement Analysis
Laban Movement Analysis, developed from the work of 

Laban (1963) is widely used for describing motion qualities, 

particularly in dance, but also well-suited for other types 

of non-verbal communication. Fdili Alaoui et  al. (2017, 

p. 4009) characterize LMA as “both a somatic and embodied

practice as well as an observational and analytical system.”

LMA has been successfully applied to the observational

analysis of the musician’s expressive bodily movements

(Broughton and Stevens, 2012). In recent years, machine

learning algorithms have been employed to recognize LMA

qualities in motion capture data (Silang Maranan et al., 2014;

Fdili Alaoui et  al., 2017; Truong and Zaharia, 2017).

Quantitative Analysis
The premise that music is a multimodal phenomenon has led 

to empirical interdisciplinary studies aimed at gathering 

quantitative evidence of bodily engagement in musical experience. 

Technologies such as infrared motion capture have allowed 

researchers to observe human movement in detail, extracting 

precise kinematic features of bodily movement. This brought 

about a series of studies where motion analysis is based on 

the computation of several low-level descriptors – or movement 

features – linked to musical expression (Godøy and Leman, 

2010). For example, acceleration and velocity profiles have been 

adopted for the study of musical timing (Goebl and Palmer, 

2009; Glowinski et  al., 2013; Burger et  al., 2014; Dahl, 2015). 

Quantity of motion has been related to expressiveness (Thompson, 

2012) and has been used to study the dynamic effects of the 

bass drum on a dancing audience (Van Dyck et  al., 2013), 

while contraction/expansion of the body has been used to 

estimate expressivity and emotional states (Camurri et al., 2003). 

More advanced statistical methods, such as functional PCA 

and physical modeling, have led to mid-level descriptors, 

including topological gesture analysis (Naveda and Leman, 

2010), curvature and shape (Desmet et  al., 2012; Maes and 

Leman, 2013), and commonalities and individualities in 

performance (Amelynck et  al., 2014).

Objective assessment of movement behavior includes 

measurement of kinematics (i.e., position and movements of 

the body and the instrument), kinetics (i.e., forces involved 

in the movement task), and muscle activation (e.g., onset, 

offset, and amplitude of muscle activity) (Winter, 2009). Various 

measurement systems have been used for assessments of 

three-dimensional motions in musical performance, including 
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infrared high-speed optoelectronic (camera) systems (Gonzalez-

Sanchez et  al., 2019), inertial measurement units (IMU; Visi 

et al., 2017), and ultra-sonic system (Park et al., 2012b). Kinetic 

assessments have used force or pressure sensors for body contact 

with instruments, such as finger (Kinoshita and Obata, 2009) 

and chin forces (Obata and Kinoshita, 2012) and weight 

distribution (Spahn et  al., 2014) in violin playing. Assessments 

of muscle activation commonly involve electromyography (EMG) 

using surface electrodes for superficial muscles (Park et  al., 

2012a; Gonzalez-Sanchez et  al., 2019), but also fine wire 

electrodes to assess deeper muscle layers (Rickert et  al., 2013). 

In musical performance, many studies have shown variation 

in kinematics linked to different expressive conditions (Dahl 

and Friberg, 2007; Weiss et al., 2018; Massie-Laberge et al., 2019).

Knowledge Gaps
There have been attempts to link qualitative and quantitative 

methods in musical performance research, by integrating a 

performer-informed analysis (Desmet et  al., 2012; Coorevits 

et  al., 2016), an approach described by Leman (2016) as a 

combination of top-down and bottom-up perspectives. However, 

there is still a lack of coherent, systematic methods for combining 

computational approaches to the analysis of musical expression 

with qualitative analysis, informed subjective accounts, and 

socio-cultural perspectives (Coessens and Östersjö, 2014; Crispin 

and Östersjö, 2017; Gorton and Östersjö, 2019). The aim of 

the method development, outlined in the present paper, is to 

better understand how qualitative research methods, such as 

stimulated recall and open coding, can be  further developed 

in order to generate data useful for the analysis of embodied 

musical expressivity.

The first challenge is the development of methods for 

multimodal data collection built on a consolidated procedure 

for the inclusion and integration of performer-centered 

perspectives on musical performance. The second challenge 

is to employ the resulting multimodal data corpora and take 

full advantage of the computational methods for multimodal 

analysis introduced in section Multimodal Music Representation 

and Analysis. This would enable new analytical approaches 

as well as extended, data-driven musical (and cross-disciplinary) 

practices (Green et  al., 2018).

Design of the Pilot Study
To develop and evaluate methods for collection and analysis 

of multimodal data, we  chose to focus on Alban Berg’s Vier 

Stücke op.5 (Berg’s, 1924), performed by two members of 

Norrbotten NEO. The clarinet player, Robert Ek, also co-author 

of this article, performed the piece together with pianist Mårten 

Landström and was then engaged in a qualitative study carried 

out in a series of steps, as described below. Berg’s piece is a 

post-tonal set of miniatures. Each movement is very short but 

contains rapid shifts of tempo and the range of the clarinet 

part is 3.5 octaves which contribute to the expressiveness of 

the music. We  also found the condensed format and the post-

romantic expressiveness apt for a study of musical shaping 

through a multimodal analysis (Figure  1).

Quantitative Data Collection
Since sound-producing and sound-facilitating movements 

(Godøy, 2008) of clarinet performance are less visually detectable 

due to the affordances of the instrument, we  opted to record 

EMG data. This allowed us to capture finger movements, and 

thereby study the role of sound-producing gesture in the 

segmentation, or chunking, of the music in the clarinet part. 

To quantitatively capture a comprehensive view of the movement 

behavior, we  included measurement of kinematics, kinetics, 

and muscle activity using a mobile movement science lab 

(Noraxon, United  States). We  recorded audio (four channels: 

separate clip-on condenser microphones for clarinet and piano 

and a stereo recording of the hall ambience) and video of a 

performance (two cameras placed on the left and on the right 

of the stage). At the same time, we  gathered data from 16 

inertial sensors, six EMG electrodes, and two insole pressure 

sensors worn by the clarinet player (see Figure  2).

Kinematic Data
Full body kinematics were measured with a wireless MyoMotion 

(Noraxon, United  States) system comprising 16 sensors based 

on IMU. Sensors were mounted on the head, upper arms, 

forearms, hands, upper thoracic (spinal process below C7), 

lower thoracic (spinal process above L1), sacrum, upper leg, 

and lower leg and feet. Sampling rate was set to 100  Hz.

Kinetic Data
The ground reaction force from the feet was measured bilaterally 

with wireless pressure sensor insoles (Medilogic, Germany), 

with a sampling rate of 100  Hz.

Muscle Activity
Muscle activity was measured with EMG using a wireless eight-

sensor system, Noraxon MiniDTS (Noraxon, United  States). 

Skin preparation was done according to SENIAM,2 including 

shaving and rubbing with chlorhexidine disinfection. Bipolar, 

self-adhesive Ag/AgCl dual surface electrodes with an inter-

electrode distance of 20  mm (Noraxon, United  States) were 

2 http://www.seniam.org/Q18

FIGURE 1 | Ecological setting of the study: Acusticum Concert Hall.
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placed on flexor digitorium (Blackwell et al., 1999) and anterior 

deltoids and upper trapezius as described by SENIAM bilaterally. 

Sampling rate was 1,500  Hz.

Qualitative Data Collection
The qualitative analysis was carried out by the clarinetist, Robert 

Ek, in interaction with members of the research team. The 

analysis followed a series of steps, oscillating between first‐ and 

third-person perspectives (see above). An initial process of 

stimulated recall, using open coding had already been carried 

out on an earlier recording of the same piece. From this process, 

a series of codes that pertained to movement had emerged, 

through continued re-coding carried out through further 

intersubjective analysis by Ek, Östersjö, Visi, and the 

choreographer Åsa Unander-Scharin. In the stimulated recall 

sessions in the present study, the same descriptors were used 

in the descriptive analysis of movement (phase two below). 

The analysis was carried out in four steps, out of which the 

later three were designed as stimulated recall sessions using 

the audio and video recording as stimuli:

• To annotate the score and mark phrases, sub phrases and

goal points;

• To make annotations of technical descriptions of movement;

• Analysis of movement qualities using the LMA framework; and

• Annotation of musical intentions.

Phrasing and Goal Points
Prior to the stimulated recall, the performer was asked to 

mark the score with intended phrasing and the goal points 

within the phrase structure. This procedure is closely aligned 

with what Leman (2016, p.  59), describes as the top-down 

perspective of a performer-inspired analysis, with the aim of 

providing “an understanding of the musical structure as a 

performer’s action plan.” What the present study adds to Leman’s 

approach is the performer’s further analytical engagement 

through stimulated recall. These data were manually transferred 

to ELAN (2020), and constituted an important reference point 

when comparing quantitative layers of data to the intended 

musical shaping (Coorevits et  al., 2016; Östersjö, 2020).

Observational Analysis of Movement
The next step, carried out by Ek, was to identify and describe 

body movement in the performance captured in the video. 

Particular attention was also directed toward the coarticulation 

of gesture in performance, and how these structures can 

be  understood as either spatial or temporal (Godøy, 2014). 

As mentioned above, the technical descriptors of movement 

applied in the analysis at this stage were formulated during 

the analysis of the previous recording of the same piece. Further 

observational analysis lay the ground for the next step, which 

involved a more systematic description of movement qualities.

Laban Movement Analysis
In this pilot study, we  selected some aspects of the LMA 

framework for the purpose of categorizing expressive movement 

qualities. The LMA system consists of four categories – Body, 

Effort, Space, and Shape – and provides a rigorous model for 

describing and analyzing movement. The Body category describes 

structural and physical characteristics of the human body while 

moving. This category is responsible for describing which body 

parts are moving, which parts are connected, which parts are 

influenced by others, and general statements about body 

organization. Effort is a system for understanding the more 

subtle characteristics about movement with respect to inner 

intention. Space represents where the body is moving and the 

relationship between the body and the surrounding environment.

Studd and Cox (2013) describe the effort as “the dynamic 

or qualitative aspects of the movement. […] Effort is in constant 

flux and modulation, with Factors combining together in different 

combinations of two or three, and shifting in intensity throughout 

the progression of movement” (Studd and Cox, 2013, p.  159).

Effort is divided into four factors as follows:

• Space Effort considers focus or awareness, ranging from direct

to indirect.

• Weight Effort considers pressure, force, or sensitivity, ranging

from strong to light.

• Time Effort considers speed or slowing of the pace, ranging

from quick to sustained.

• Flow Effort considers the control of movement, ranging from 

bound or controlled to free or released.

Effort elements usually occur in combination. While a full 

Effort action would consist of all four elements, it is more 

common to find only two or three. Each Effort factor is thought 

of as a continuum with two opposite ends, called elements, in 

which movement can vary and thus reveal different “Effort 

qualities.” The combination of Space, Time, and Weight is called 

Action Drive and comprises eight different combinations, all 

understood as goal-directed actions (Broughton and Stevens, 2012). 

Since the Effort actions are closely related to dance gestures, 

we  decided to delimit the LMA observations to the Action 

FIGURE 2 | Sensor placement on the clarinetist’s back and shoulders.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

AUTHOR'S PROOF



Visi et al. Method Development: Multimodal Corpus Analysis

Frontiers in Psychology | www.frontiersin.org 8 November 2020 | Volume 11 | Article 576751

FIGURE 3 | Frame of the right-side camera video feed and corresponding motion data frame showing point locations. The markers in red were used for feature 

extraction.

Drive. In the coding sessions, Ek would carry out third-person 

observational analysis, employing the Action Drive categories 

in the coding.

Annotation of Musical Intentions
The use of qualitative annotations in stimulated recall from 

first‐ and second-person perspectives has been developed and 

tested in different contexts (Coorevits et  al., 2016; Östersjö, 

2020). While several of these earlier studies have explored 

intersubjective meaning formation, in the present study, Ek 

would mainly focus on first-person perspectives in the 

annotations. The qualitative analysis of video, using stimulated 

recall, departed from the video recordings, and the first round 

of stimulated recall was carried out using open coding. We outline 

in greater detail below how this procedure was expanded 

through cross-comparison of the multi-modal data collected 

in the study.

Assessment of the Data Collection Through 
Cross-Comparison
The first cycle of qualitative analysis was carried out by Robert 

Ek from the video recordings, prior to viewing any of the 

quantitative data. The coding and annotations were assessed 

by way of joint observation by the research team and further 

explored through cross-comparison with the quantitative data. 

The observations made were then the source for designing 

new stimulated recall sessions with Ek. These layers of qualitative 

coding were then synthesized, and again cross-compared with 

the quantitative data. Preliminary findings from the qualitative 

analysis, and some observations from the comparison with 

the quantitative data, are discussed in section First-Person 

Observations and Cross-Comparison of Data below.

RESULTS OF THE PILOT STUDY

The results of the pilot study are structured in two parts. In 

section Identification and Extraction of Relevant Features, 

we  outline the methods used for feature extraction. In section 

First-Person Observations and Cross-Comparison of Data, 

we  discuss the interrelation between the different types of 

data. We  further assess the combined qualitative methods and 

present some examples of how the first-person annotations 

by the clarinetist have provided musically meaningful results, 

which, we will argue, have a bearing on the study of chunking 

and coarticulation.

Identification and Extraction of Relevant 
Features
The research team worked jointly at identifying relationships 

between the quantitative data, structural elements in the piece, 

and the qualitative data obtained through the coding sessions 

and annotations. We  computed a set of features from the 

recorded quantitative data in order to cross-compare it with 

the qualitative annotations and identify patterns, correlations, 

discrepancies, etc. From the motion data, measured with the 

IMU system, we  selected five of the 53 trajectories obtained 

by processing the inertial data: the body center of mass, the 

left and right elbows, the left and right toes, and one trajectory 

for the head, highlighted in red in Figure 3. We then computed 

the magnitude of a jerk for each of these trajectories. Jerk is 

the rate of change of acceleration, and it has been linked to 

musicians’ expressive intentions (Dahl and Friberg, 2003). Peak 

detection was used to spot local maxima in the jerk values.

Another feature we  extracted from the motion data is the 

Contraction Index (CI). CI is calculated by summing the 

Euclidean distances of each point in a group from the group’s 

centroid (Fenza et al., 2005). When used with full-body motion 

capture, it is an indicator of the overall contraction or expansion 

of the body, and it has been used for emotion recognition 

applications (Piana et  al., 2016b). We  computed CI for each 

frame by summing the Euclidean distances between all the 

points and the center of mass of the body. We  then used 

peak and trough detection to mark CI local minima and 

maxima, which respectively correspond to moments in which 

the body is relatively contracted and expanded.

The data obtained from the insoles gave us an estimate of 

how the weight was distributed on Ek’s feet at any time during 
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the performance. To better understand the dynamics of weight 

shifting – which has been used for the analysis of expressive 

movement qualities (Fdili Alaoui et  al., 2015) – we  calculated 

the difference between the weight on the left foot and that 

on the right foot. This measure is therefore equal to zero 

when body weight is equally distributed between left and right 

foot, positive when there is a relatively higher load on the 

left foot, and negative when there is a relatively higher load 

on the right foot. The derivative of this measure therefore 

indicates how quickly Ek shifted his body weight during the 

performance. Additionally, we  summed up the left and right 

weight values to obtain an estimate of the overall vertical 

acceleration dynamics. This measure showed when the performer 

pushed himself upward against gravity (e.g., if the performer 

were to perform a jump, the data would ostensibly show a 

peak during the initial thrust, then a trough as the body takes 

off, and then a second peak on landing). In the data, we observed 

correspondences between sharp troughs in this measure with 

annotations of gravity and energy, as well as with Direct/

Quick/Light (DQL) LMA movement qualities.

We computed the root mean square (RMS) of the EMG 

data of the anterior deltoids and the finger flexors after bandpass 

filtering (low frequency  =  20  Hz; high frequency  =  350  Hz) 

to reduce signal noise. The resulting values are an estimation 

of muscular activation of the finger flexors and anterior deltoids 

during the performance. The data were further processed to 

find abrupt changes and to spot onsets and offsets of muscular 

activation. We  observed correspondences between the onsets 

and offset of the finger flexors and indicators of phrasing in 

the annotations, while the activation of the anterior deltoids 

corresponded with increases in the CI values, as the activation 

of these muscles is linked with rising the elbows.

In order to obtain a measure of loudness of the clarinet 

sound, we computed the RMS values also of the audio, recorded 

from the clip-on microphone placed on the clarinet. The peaks 

in the resulting loudness envelope often corresponded to troughs 

in the weight sum measure obtained from the insoles as 

explained above, particularly while approaching annotated goal 

points, indicating that the integration of these features might 

be  useful for segmentation and individuation of goal points.

First-Person Observations and 
Cross-Comparison of Data
For the purposes of this pilot study, it was essential for the 

research team to observe and explore possible confluences 

between the different data streams. In particular, we  wished 

to assess the relation between certain patterns in the quantitative 

data and the qualitative annotations made by Ek. An example 

of such cross-comparison can be seen in Figure 4. Here, we can 

see a striking mirroring pattern between the loudness of the 

clarinet sound and the curve of the insoles weight sum – 

suggesting a relation between the vertical thrust in the performer’s 

body movement and the dynamics in the musical performance. 

Further, we  also see how the CI, jerk, and insoles weight sum 

coincide in the prefix to the goal point indicated in the initial 

stage of the qualitative analysis.

The final layer of qualitative analysis was again carried out 

by Ek in the form of a stimulated recall. Here, the research 

team’s cross-comparison of different constellations of quantitative 

and qualitative data from the study, relating them to the musical 

content, was central. This cross-comparison was carried out 

to explore the possibility of enhancing the qualitative findings 

through the use of stimulated recall sessions using the video 

data, by also asking Ek to reflect on commonalities and 

discrepancies between his annotations and the quantitative data. 

In the following paragraphs, we  provide four examples of how 

further detailed understanding could be  drawn out of these 

multimodal sources.

First, when looking at the CI in the first movement, computed 

from the quantitative analysis (see Figure  5), and comparing 

it with the annotations from the qualitative coding, certain 

connections were observed by the research team. The troughs 

followed the overall gestural shape in the music of the first 

movement and, upon closer examination, it reveals that almost 

all annotated goal-points occurred when the CI was rising 

(i.e., indicating that the movement span is expanding in relation 

to the center of mass). A few deviations from this pattern 

attracted the attention of the research team, and Ek was invited 

to make a closer examination of these instances, through a 

new round of stimulated recall. His observations were 

documented in new qualitative annotations. This renewed 

qualitative analysis was fruitful in evoking musically meaningful 

observations. The first instance concerned the opening phrase 

in which Ek had annotated a goal-point right at the beginning. 

But here, there are two rising curves in the CI, and the second 

one does not lead to an annotated goal point, Ek had annotated 

a goal point located right at the beginning of the phrase. 

When again exposed to the video recording, Ek entered the 

following annotation:

I suddenly realize that this phrase always [has] been 

awkward for me to play, it always feels disembodied. My 

professor at the university wanted me to grab the music 

from the air interpreting it as being the middle of the 

phrase and then finish the phrase. The embodied gesture 

coupled with the quantitative data reveals that I make 

a poor job and my feeling of disembodiment turned out 

to be true. With this in mind, I will reinterpret the first 

phrase next time I play this piece.

Hence, Ek divided the phrase in two sub-phrases in which 

the second sub-phrase holds the part with the second rising 

curve in the CI. Although there was no annotated goal point, 

in accordance with the above annotation, Ek now realized 

that his interpretation entailed a second goal point in this 

phrase, although his teacher’s instruction had made it hard 

for him to identify this. The second instance where the CI 

does not align with a goal point is around 20  s (see Figure 5). 

Here, we  find an increase in the CI but, for the second time, 

the increase in the index does not lead to an annotated goal 

point. In Ek’s annotations in the score, the phrase is divided 

in two sub-phrases, and the increase in the CI marks the end 

of the first sub-phrase. The research team was, however, still 
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FIGURE 4 | A segment of the multimodal recording showing jerk, CI, loudness, and insoles weight sum, which displays the coarticulation of body parts in relation 

to a goal point, indicated by the red rectangle. The blue rectangles indicate the breathing, such as captured also in the jerk data.

FIGURE 5 | The CI, aligned with the annotated phrasing, and goal points (marked in yellow) in the first 20 s of the first movement. Each rising curve in the CI is 

marked in red, and the two instances in which the CI does not lead to a goal point are darker.
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uncertain of what the rising CI represented in the performer’s 

shaping of the phrase. We  had already been cross-comparing 

the jerk values with the phrasing, and here, this data appeared 

to hold a clue. In Figure  6, we  see a summary of the jerk 

values from several body parts, aligned with the phrasing data, 

and with the clarinet part of the relevant phrase added in.

The data clearly indicates a temporal coarticulation in which 

the different body parts initially are not aligned, but all come 

together on the third beat, which Ek had marked as a goal 

point in the score. Hence, the second rising CI which did 

not align with an annotated goal point (see Figure  5), marks 

the initial impetus in a longer trajectory in the musical shaping. 

When this observation had been made by the research team, 

Ek again viewed the video and made the following annotation:

Structurally, this goal point is of a higher order than the 

previous ones, and is the first culmination of the material 

introduced in the first bar. This is also indicated in the 

score, since this is the first instance of a joint chord on 

downbeat in the two instruments. But what concerns 

me in the shaping of this phrase is to achieve an elastic 

shaping of the phrase, up to this goal point. The jerk 

data made me see how my intentions for phrasing are 

in fact represented in the complex relation between body 

parts, moving, as it were, with different trajectories 

toward the common goal point.

Ek’s observations of perceived movement qualities, using 

the LMA framework, also coincide with the activity in the 

jerk values (see Figure  6). In the first part of the phrase, the 

movement is categorized as Indirect/Sustained/Strong (ISS), 

while in the preparation for the goal point, the movement is 

annotated as Direct/Quick/Strong (DQS). This set of observations 

of chunking and coarticulation constitutes our second example.

In the comparative analysis, the research team aligned 

the jerk values of the clarinetist’s center of mass from 

movements 1 to 2 (see Figure  7). A comparison between 

the two movements showed that the second movement had 

lower jerk values on average. This was expected, as the 

second movement is slower and with a more limited dynamic 

range compared to the first. However, it was also striking 

that the second movement had the highest peaks in the 

jerk data. After marking the occurrence of each peak in 

the score in both movements, we  noticed that nearly all 

FIGURE 6 | Three layers of the jerk values from several body parts, aligned with the phrasing data, and with the clarinet part of the relevant phrase at the bottom.
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the peaks corresponded with breathing, which is typically 

carried out at the prefix to a new phrase (see Figure  8). 

If we return to Figure 4, a further observation can be made. 

Here, in the three instances when they coincide with breathing 

(marked with blue rectangles), we  see how the peaks in 

the jerk data coincide with low amplitude in the RMS 

loudness. The second peak in the jerk data in which the 

RMS loudness is instead high, does not represent breathing, 

but rather the performer’s preparation aimed at the goal 

point. This interplay between different modalities can 

be  systematically harnessed by means of machine analysis, 

further expanding the potential for a holistic understanding 

of music performance.

The highest peaks in the jerk values in the second movement, 

found in bar 6 (see Figure  9), seemed to demand further 

study, and Ek was asked to return to the second movement 

for a new session of stimulated recall. When reviewing the 

video recording, he  realized that the highest peak did not 

merely represent a quick and deep breath, which is motivated 

by the length of the following phrase, but furthermore, reflects 

the musical phrasing.

In the score, the clarinet starts out with a three-note figure 

in eight notes, and, after the third beat, the first notes, a Cb 

and a Bb are repeated, now in forte, accentuated and with a 

crescendo leading up to the next downbeat. The downbeat in 

bar 7 was annotated by Ek as a goal point, which seems to 

be  a logical aim, given the notated structure.

However, when Ek revisited the data, and the video recording, 

he  made the following set of observations:

It is clear from the extensive prefix to the second iteration 

of the Cb, captured in the jerk values, that I aim at the 

Cb in this bar. It also is by far the loudest note in the 

phrase. This may have multiple reasons, since the Bb 

and Ab is so much weaker on the clarinet than the Cb. 

They are in the so-called throat register, and hence, 

I  shift register between the Cb and the Bb. Also, the 

piano has a crescendo which starts on the second and 

leads up to the fourth beat, which provides a clear 

direction for the entry of the second Cb in the clarinet. 

While the structural downbeat on the beginning of the 

next bar certainly guides our phrasing, perhaps partly 

due to the weakness in the register of my instrument, 

I compensate for the lack of dynamic force by speeding 

up toward the Ab. At the same time, this also gives a 

natural shape to the closure of the phrase. Still, it was 

only when studying the jerk data that I realized that in 

my rendering of this phrase, again, perhaps due to the 

limitations of the instrument in this register, the greatest 

intensity was not by the intended goal point, but in the 

lead to it.

The LMA coding by Ek is very much aligned with the 

jerk data discussed above (see Figure  8), and casts further 

light on the shaping of the entire phrase. The two first peaks 

in the jerk data in bars 5–9 (marked with blue in Figure  8) 

occur straight after the breath. They were annotated with 

DQS, and the third was annotated with DQL. Hence, the 

downbeat, which should have constituted the highpoint, was 

FIGURE 7 | The body centers of mass jerk values in the first and second movements.
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annotated as “light,” while the two preceding as “strong.” 

When the energy begins to dissolve, the LMA annotation is 

Indirect/Sustained/Light (ISL), which in turn leads from an 

annotated “zero position” to “still.” Hence, when annotating 

the movement qualities, Ek made observations that confirmed 

the insight he  later obtained when doing the final stimulated 

recall. If the agency of the instrument is understood as a 

contributing factor in his rendering of the phrase, then it 

FIGURE 8 | A representation of the jerk values in the second movement, with the breathing marked with red rectangles.

FIGURE 9 | Bars 5–9 of the second movement in Alban Berg’s Vier Stücke op.5 (Berg’s, 1924, p. 5)
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should also be  noted that the negotiation between performer 

and instrument can be observed also in the movement qualities, 

and in particular in the shift from “Strong” to “Light” in 

the LMA-annotations. A similar representation of performer-

instrument interaction in the shaping of the music is found 

in the final bars of the first movement. The music culminates 

in bar 8, and the clarinet then gives shape to a final melodic 

figure, which starts on the second beat of bar 9. The final 

note, an A, is then repeated across the two final bars (annotated 

in the score to be performed “ohne ausdruck,” with a notated 

ritardando starting in bar 10).

Some patterns in the CI of the entire section (bars 6–12) 

in the first movement can be connected to the musical shaping 

of these bars (see Figure  10). Each time the CI makes a 

quick dip, we  encounter an annotated goal point. Just as in 

the previous example, the bodily action is closely aligned with 

the prefix to the goal points, with the CI typically connected 

with the clarinetist bending his knees. This pattern is ongoing 

through the continuous build-up, all the way up to bar 8, 

after which the low points in the CI gradually decrease, 

throughout a longer diminuendo. This process is in turn 

followed by a coda in which the clarinet gradually moves to 

a repeated A, first articulated as pulsating eighth notes, and 

then slowing down and bringing the movement to a close. 

Here, the CI marks a clear shift, and also provides an image 

of the pulsations (largely marked by movements of the elbows) 

and the structural ritardando. But what attracted the attention 

of Ek, when he  studied the index, is how he  found that the 

overall CI was higher than what had been recorded as his 

“neutral” position. When he  reviewed the video he  made the 

following annotation:

This section is marked “ohne ausdruck” and I had sought 

to create such an expression. However, when considering 

the elevated and widened bodily position, suggested by 

the CI, and reviewing the video (at the point where I lift 

the bell and keep my head high), I realize that my posture 

is not “neutral.” In retrospect, I find that my position 

itself projects a particular lightness to the final bars, 

which perhaps exceeds the indicated non-expressiveness.

Ek further noted how the perceived lightness was similar 

to the descriptor of “light” in the effort factor weight in LMA. 

But the shift in the performer’s position in these final bars is 

again related to the affordances of the instrument since the 

angle of the instrument must be  consistent, across any series 

of movements, when the instrument is lifted, like in these 

final bars, the entire body must follow. A comparison between 

the CI of Ek’s position before the beginning of the piece (the 

reference “zero” position) and the final bars confirm the visual 

observation of the curve. The CI in the zero position is 

approximately 0.665 and, in the ending, 0.856. If in this final 

example, expressive gesture in the performance adds further 

quality to the interpretation, rather than merely highlighting 

or accompanying the musical shaping, it must also be  noted 

that the role of the performer’s movement is shifting across 

the four examples drawn from this pilot study. In the first 

example, we  see how the movement data, and the qualitative 

coding of musical structure, unveils conflicting ideas regarding 

the interpretation of the score. The second example illustrates 

how the coarticulation of movement, here captured in the jerk 

data, may align in the preparation for the goal point of a 

phrase. The third example is also concerned with coarticulation 

and indicates how breathing can be  woven into the expressive 

enforcement of musical intentions.

DISCUSSION AND FUTURE WORK

While the scope of the pilot study we  discuss is limited to 

data from one single performance, some observations can 

be made regarding the method development it seeks to explore. 

We  see indications that meaningful data can be  drawn from 

stimulated recall interviews with musicians, and further, that 

a cross-comparison with quantitative data, recorded in the 

same performance, may enhance this procedure. More specifically, 

FIGURE 10 | The CI in bars 6–12 of the first movement.
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the results of this pilot project suggest that new perspectives 

on the role of coarticulation in musical performance – and 

also the role of embodiment in musical shaping – can be achieved 

through such combinations of methods. For instance, we  find 

that added value is to be  found in reflections on the agency 

of the instrument (as in the rendering of the lead up to the 

indicated goal point, discussed in example two) and through 

the socio-cultural perspective suggested in example one, when 

the role of a former teacher turns out to be directly influencing 

the rendition of the opening phrase in the first movement.

Clearly, the interaction between the authors in the research 

team was beneficial for the repeated stimulated recall sessions, 

but the actual qualitative analysis was mainly carried out from 

a first-person perspective by Ek. We now see that the oscillation 

between first‐ and second-person perspectives (see for instance 

Coorevits et  al., 2016; Gorton and Östersjö, 2019; Östersjö, 

2020) have benefits which we will implement in the continuation 

of the project.

We also wish to connect the observations made by Ek of 

the movement qualities in the sections discussed in section 

First-Person Observations and Cross-Comparison of Data, 

through the analytical grid of LMA, to the basic types of 

gestural sonorous objects (Godøy, 2006), presented in section 

Coarticulation, Chunking, and Segmentation in Music 

Performance above. There are obvious connections between 

the two, most immediately in the Time Effect Factor of LMA, 

which corresponds closely with the impulsive and sustained 

gestural sonorous objects. While LMA is a comprehensive 

system based on bodily action, the gestural sonorous object 

draws its typology from the study of sound objects, arguing 

that the multimodal nature of our perception suggests that a 

musician’s movements in performance should be  inherently 

connected to the resulting sound object. It is indeed also this 

very connection which we  seek to explore, and therefore, an 

analytical framework should make these connections as explicit 

as possible. We  believe that a comparative study of these two 

systems might lay the grounds for an analytical framework 

which is grounded in a multimodal understanding of musical 

perception. Such a comparative study might, in itself, provide 

important knowledge for the development of observational 

analysis of musician’s movement in performance. Further, this 

would constitute the beginning of a development of a multimodal 

ontology for music analysis, expanding on the concepts developed 

for an ontology of audio features proposed by Allik et  al. 

(2016), in the context of MIR. Following Avanzini and Ludovico 

(2019, p. 3), we believe that “the availability of music information 

structured in this way may allow to extract higher-level meaning 

using appropriate features and machine learning approaches.” 

In fact, this will extend the machine learning of musical gestures 

(Visi and Tanaka, 2020a) and enable cross-modal mapping 

approaches based on higher-level musical knowledge (Visi et al., 

2017) as well as AI-assisted techniques for the exploration of 

high-dimensional data (Visi and Tanaka, 2020b).

As outlined in section Knowledge Gaps, we  see two main 

challenges in the development of methods to systematically 

link quantitative and qualitative data for the multimodal analysis 

of music performance. The first one, consolidating a method 

for data collection to build a multimodal data corpus, has 

been approached with the pilot study presented here. At the 

same time, we  see several avenues for further development, 

additions, and modifications. Future studies will address the 

second challenge, that is, to perform computational analysis 

of the resulting data corpus. As denoted in section Coarticulation, 

Chunking, and Segmentation in Music Performance, machine 

learning, and multimodal fusion constitute promising techniques 

for aiding the identification and mapping of phenomena such 

as chunking and coarticulation, particularly in a scenario where 

training data is augmented by qualitative annotations. 

Decomposition in chunks and the dynamics of coarticulation 

are still open problems in music research, as only a few empirical 

studies look at how these processes unfold, and – to our 

knowledge – none of these address longer time spans, or look 

at patterns across multiple performances. Prior studies employed 

computational techniques for the automated identification of 

movement qualities (Fdili Alaoui et  al., 2017). However, this 

approach has not been implemented in musical performance 

studies, with data on chunking and analysis of gestural sonic 

objects (Godøy, 2018). We  expect automated decomposition 

and segmentation techniques to benefit from the qualitative 

data in the corpus, but we  also see how the collection and 

assessment of new qualitative data may take advantage of 

interactive tools in a paradigm similar to the work by Gulluni 

et  al. (2009) described in section Coarticulation, Chunking, 

and Segmentation in Music Performance. This might ultimately 

lead to a two-way process in which, on the one hand, qualitative 

observations inform the structural relationships between 

qualitative data streams and, on the other, this information 

supports the gathering and refinement of new qualitative data.

Even though the present study is focused on the development 

of a method for the production and collection of qualitative 

data paired with multimodal quantitative data, it also highlighted 

the challenges related to the use of EMG signals in expressive 

gesture analysis. Extracting RMS amplitude, offsets, and onsets 

of EMG showed some correspondences with musical structures 

and qualitative annotations. However, given the complexity of 

the signal and its susceptibility to noise, we believe that further 

processing, the extraction of additional descriptors, and the 

adoption of machine learning techniques (Zbyszynski et  al., 

2020, forthcoming), are necessary steps to fully integrate EMG 

in the corpus analysis.

Implications on Musician’s Wellbeing
We have observed in several instances how important information 

can be drawn from quantitative measures of movement behavior, 

i.e., kinematics, kinetics, and muscle activity. As outlined in

the result section First-Person Observations and Cross-Comparison

of Data, we  found both associations and diversities between

features. For example, associations between CI, jerk, and forces

from the insoles (insoles weight sum) as they coincide in the

prefix to the goal point, and between EMG RMS amplitude

of the anterior deltoids which correspond with increases in

the CI values. We  discuss above how peaks in the jerk data

coincided with low amplitude in the RMS loudness, and how

this is an indicator of breathing. We  have also observed
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correspondences between the onsets and offset of the finger 

flexors EMG and indicators of phrasing in the annotations. These 

findings support the notion that a more comprehensive analysis 

can be achieved through cross-modal processing and multimodal 

fusion methods on quantitative and qualitative data (Essid and 

Richard, 2012; Lesaffre and Leman, 2020). Further work on 

larger datasets is necessary, and we are therefore planning further 

data collection involving diverse instrumentalists and instruments.

The focus of the present study was to gather multi-layered 

data related to embodied musical expression, which thereby 

guided the choice of features calculated from the measurements 

of the IMU, EMG, and insole systems. Other relevant features 

that are commonly calculated from such measures include, 

e.g., kinematic measures of joint angles, and velocity and

acceleration of the joints and body parts; kinetic measures of

forces acting on different body parts or applying inverse dynamic

analyses to kinematic measures; and muscle activity normalized

to maximum voluntary contraction and muscle co-contractions.

Such conventional features added to the data corpus may

increase understanding of the embodied musical expression,

while also having substantial use for ergonomic analyses and

assessment of injury risk in future research.

We expect that the multimodal approach discussed in this 

paper will contribute substantially to the study of movement 

behavior related to the wellbeing among musicians. It has a 

bearing both on professional as well as educational contexts.

It is well-known that the prevalence of musculoskeletal pain 

conditions is relatively high among professional musicians, and 

especially located to the neck, back, and upper extremities (Paarup 

et  al., 2011). Risk factors include, e.g., biomechanical factors 

such as repetitive movements, load-bearing, and awkward postures 

(Kaufman-Cohen and Ratzon, 2011). These factors can be explicitly 

measured and analyzed with methods outlined in the present 

study, and further developed through additional methods for 

qualitative inquiry. Increased knowledge and developments in 

this area can thereby contribute to better assessment methods, 

and as a continuation, more efficient prevention and intervention 

strategies to counteract health conditions among musicians.

Skilled performance has been observed to involve specific 

attributes regarding movement behavior, e.g., consistency, minimal 

effort, and flexibility (Higgins, 1991). A musician’s transition from 

novice to expert will typically pass various learning phases through 

which their performance can be  seen to develop. The projected 

multimodal corpus is expected to help identify specific attributes 

or features that are characteristics of highly skilled musical 

performance, as well as specific features related to the different 

phases of learning. We  expect this knowledge to be  valuable in 

learning and teaching situations, in order to promote skilled 

movement behavior while minimizing the risk of injury.

Method Refinement and Concluding 
Reflections
For the continued data collection, it will be necessary to develop 

a set of descriptors for the coding of movement that can 

be  common for different instrumentalists, and also shared 

across different instrument types. Greater efficiency will 

be  needed in every step, in order for the stimulated recall 

procedure to be  feasible with a greater number of performers, 

who also will not always be  participating as researchers. In 

order to further develop this framework, a series of similar 

studies with one and two performers will be  carried out in 

the autumn of 2020. As the corpus development continues, 

we  see the development of methods that also assess the inter-

annotator agreement (Bobicev and Sokolova, 2017) as essential. 

Such an approach would be emblematic for a trajectory within 

the project, from the current focus on high-level features, 

toward an increasingly multimodal analysis, aiming to become 

as holistic as is music in performance.
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