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1 Introduction

This chapter presents an overview of Interactive Machine Learning (IML) tech-
niques applied to the analysis and design of musical gestures. We go through the
main challenges and needs related to capturing, analysing, and applying IML
techniques to human bodily gestures with the purpose of performing with sound
synthesis systems. We discuss how different algorithms may be used to accom-
plish different tasks, including interacting with complex synthesis techniques and
exploring interaction possibilities by means of Reinforcement Learning (RL) in
an interaction paradigm we developed called Assisted Interactive Machine Learn-
ing (AIML). We conclude the chapter with a description of how some of these
techniques were employed by the authors for the development of four musical
pieces, thus outlining the implications that IML have for musical practice.

Embodied engagement with music is a key element of musical experience,
and the gestural properties of musical sound have been studied from multiple
disciplinary perspectives, including Human-Computer Interaction (HCI), musi-
cology, and the cognitive sciences [1]. Likewise, designing gestural interactions
with sound synthesis for musical expression is a complex task informed by many
fields of research. The results of laboratory studies of music-related body motion
based on sound-tracing were indicated as a useful starting points for designing
gestural interactions with sound [2]. Informed by environmental psychology, the
notion of sonic affordance was introduced to look at how sound invites action,
and how this could potentially aid the design of gestural interfaces [3].

Designing and exploring gestural interactions with sound and digital media
is at the foundation of established artistic practices where the performer’s body
is deeply engaged in forms of corporeal interplay with the music by means of
motion and physiological sensing [4]. Gesture and embodiment become the core
concepts of extended multimedia practices, where composition and interaction
design develop side by side [5, 6], and gesture is a fundamental expressive ele-
ment [7].

1.1 Why Machine Learning Musical Gestures? Needs and
Challenges

Designing gestural interactions that afford dynamic, consistent, and expressive
articulations of musical sound is a challenging and multifaceted task. A key
step of the design process is the definition of mapping functions between ges-
ture tracking signals (usually obtained through some motion sensing device) and
sound synthesis parameters [8]. These parameter spaces can be very complex,
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depending on the motion sensing and sound synthesis approaches adopted. An
effective mapping strategy is one of the crucial factors affecting the expressive
potential of a gestural interaction, and as the spaces defined by motion signals
and synthesis parameters become more highly-dimensional and heterogeneous,
designing mappings can be an increasingly elaborate task, with many possible
solutions [9].

In this scenario, gestural interaction design is a robust nontrivial problem,
and Machine Learning (ML) techniques can be used by researchers and artists
to tackle its complexity in several ways. One of the most notable implications
of using ML in this domain is that mappings between gesture and sound can
be interactively “shown” to a system capable of “learning” them [10] instead of
being manually coded, which in certain situations could become excessively com-
plex and time consuming. In other words, this delineates an interaction design
paradigm where interactive systems shift from executing rules to learning rules
from given examples [11]. This has advantages in collaborative and interdisci-
plinary creative practices, as it makes trying and workshopping different gestural
interactions easier and quicker, and enables practitioners that are unfamiliar with
programming to prototype their own gestural interactions. Moreover, software
tools such as the Wekinator [12] and ML libraries for popular programming envi-
ronments in the arts [13] have made ML for gestural interaction more accessible
and easier to learn. Another advantage of interaction design approaches based
on ML is that these are often more resilient to noisy and complex input signals
than manually programmed mappings. This is particularly useful with certain
motion tracking technologies and physiological sensors (see section 2). Noise is
not, however, the only challenge when tracking and analysing body movement
for musical interaction. Motion tracking systems may return considerably differ-
ent data when the user changes, different motion-sensing technologies measure
and represent movement in very different ways, musical gestures may convey
musical ideas at different timescales [14] and therefore it should be possible to
model both spatial and temporal features of musical gestures while maintaining
the possibility of dynamic and continuous expressive variations. We will now
describe how ML is an helpful resource in addressing these challenges.

1.2 Chapter Overview

The sections that follow will describe the main components of an IML system for
gesture-sound interaction – schematised in Figure 1 – namely motion sensing,
analysis and feature extraction, ML techniques, and sound synthesis approaches.
Following this, we will describe the typical workflow for deploying an IML system
for gesture-sound mapping and how this model can be extended further using
RL to explore mapping complexity in an AIML system prototype. We will then
describe how this models were used in some pieces composed by the authors, be-
fore closing the chapter with some remarks regarding the necessity of adopting
an interdisciplinary approach encompassing basic research, tools development,
and artistic practice in order to make substantial advances in the field of ex-
pressive movement interaction. We finish by showing that the research field has
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Interactive Machine Learning of Musical Gesture 3

implications stretching way beyond the music domain, given the increasing role
of ML technologies in everyday life and the peculiarities that make music and
the arts a fertile ground for demystifying ML and thereby understanding ways
of claiming and negotiating human agency with data and algorithmic systems.
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Fig. 1. Architecture of an Interactive Machine Learning system for gestural musical
interaction.

2 Machine-sensing Gesture

Capturing body movement for the purpose of real-time interaction with sound
may be done by various technological means. Rather than providing a list of the
many devices available for this purpose, we will describe the main approaches for
tracking body movement employed in the context of music and multimedia per-
formance, and the implications that adopting an approach over another has for
using ML techniques. These include notes on how different types of motion data
represent movement, and the opportunities afforded by the use of physiological
data.

2.1 Sensing Movement

Optical Sensing
Optical motion sensing relies on the analysis of the signals coming from vari-

ous kinds of video cameras. There are many examples of multi-camera systems
used in the arts [15, 16] as well as of systems using more sophisticated optical
approaches such as depth and stereoscopic cameras.

Despite the technology being a few decades old, marker-based infra-red Mo-
tion Capture (MoCap) is still considered as one of the most reliable methods for
measuring complex movement in a three-dimensional space. Tracking precision
and temporal resolution have progressively improved, allowing accurate track-
ing of finger movements and facial expressions. Recent MoCap systems are also
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capable of streaming motion data live, thus making real-time applications possi-
ble. Data obtained from these systems is usually in the form of three-dimensional
vectors referring to a global coordinate system. Each sample in the data returns
three-dimensional information regarding the position of a point (marker) in space
in relation to the origin of the Cartesian axes. The origin is defined during the
calibration procedure and is usually set in an arbitrary place on the floor within
the capture area. Most marker-based systems also allow to track movement in six
degrees of freedom (6DoF), meaning that – in addition to position along the three
spatial axes – the system also returns information on the orientation and rota-
tion of a point in space along three rotational axes. This information is usually
represented in Euler angles or quaternions. In MoCap systems, 6DoF tracking is
usually achieved by processing positional data of single markers grouped into a
rigid body in a predefined spatial configuration. This should be unique for each
rigid body in order to avoid mislabelling when multiple rigid bodies are in the
capture space at the same time.

Inertial Measurement Units
Inertial Measurement Units (IMU) are small, low-cost, highly portable devices

that incorporate accelerometers and gyroscopes. When these devices are paired
with magnetometers, the resulting arrays are also known as Magnetic, Angular
Rate and Gravity (MARG) sensors. These sensor arrays allow the tracking of
acceleration, rotational velocity and orientation relative to the earth’s magnetic
field of whatever they are attached to. They are used extensively in aviation,
robotics and HCI. Their increasing affordability and small size have made them
a very common feature of mobile and wearable devices and other consumer
electronics. Sensors featuring 3D accelerometers, 3D gyroscopes, and 3D magne-
tometers have become the most widely used type of IMU/MARG. They enable
to estimate various motion features including optimised three-dimensional ori-
entation obtained by fusing together the data from the different types of sensors.
These devices are often marketed as 9DoF (9 Degrees of Freedom) sensors, since
they consist of three tri-axis sensors and thus have a total of nine sensitive axes.

Whereas the raw data obtained using marker-based optical motion capture
consists of samples of position based on a 3D Cartesian coordinate system, the
data returned by IMU/MARG sensors is usually in the form of three three-
dimensional vectors, each one expressing acceleration, rotational velocity, and
orientation respectively. Calculating absolute position from the data of a single
IMU in real time is technically very difficult if not unfeasible, as the operation
would require double integration of acceleration data. This would result in a
considerable amount of residual error since drift would accumulate quadratically.

The lack of reliable information on absolute position when using single IMUs
is a key difference between data obtained through inertial sensing and that of
optical motion capture. The data obtained from IMUs sensors is morphologically
very different from positional data returned by optical MoCap. The differences in
the way movement is tracked and represented by the two different technologies
have implications on how movement data is eventually interpreted and used,
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particularly in the context of expressive movement tracking and ML of musical
gestures. As an example, single IMUs afford working with movement relative
to the body of the performer and postures, whereas having access to absolute
positions may enable interaction strategies that take into considerations the
spatial relationships between different performers and the different areas of the
performance space where the action is taking place.

2.2 Sensing the Body

It can be argued that representing human movement solely as displacement of
body parts in a three-dimensional space would result in a limited interpretation.
Merleau-Ponty maintains that we act upon the environment through proprio-
ception and “a knowledge bred of familiarity which does not give us a position in
objective space” [17, p. 166]. Salazar Sutil [18] points out that the conceptuali-
sation of corporeal movement is often optically biased, whereas sensations that
are independent from sight are often neglected. Thus, we argue that expressive
body movement cannot be entirely represented and therefore fully understood
exclusively by means of visual media. In the context of music performance, we
looked at the concepts of intention, effort, and restraint in relation to the use of
electromyogram (EMG) for digital musical instrument application [19]. EMG is
a signal representing muscle activity employed in the biomedical and HCI fields
as a highly sensitive way to capture human movement and has been used as a
signal with which to sense musical gesture [20, 21]. Using EMG for music presents
several challenges. The raw signal itself resembles noise and sensing such a low
voltage signal is difficult to do without accumulating noise from the environ-
ment. Individual anatomies vary and we each employ our muscles differently,
even when performing what looks like the same gesture. Basic signal processing
can only go so far when interpreting expressive, nuanced biosignals. Adopting
approaches based on ML can considerably help with these challenges, making
EMG an attractive technology for musical interaction. In particular, supervised
learning approaches – which will be described in section 4 – constitute a way for
tackling the intersubjective variability and the noisy quality of muscular signals.

3 Analysing Gesture

Higher-level descriptors are often used to extract features from raw motion data
to help describing body movement in a more meaningful way. Such descriptors
are frequently employed in expressive movement analysis, motion recognition,
and music performance analysis. Feature extraction is a crucial step in an IML
pipeline. This is an important task, as it will affect how ML algorithms will in-
terpret body movement and therefore determine the affordances of the resulting
gesture-sound interactions.

Programming environments such as Eyesweb [22] offer solutions dedicated
to real-time human movement analysis and feature extraction. Libraries for
real-time motion analysis such as the Musical Gesture Toolbox were initially
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dedicated mainly to standard RGB video analysis [23]. The library has been
developed further to process MoCap data and be compatible with several pro-
gramming environments [24]. Notably, some of the features that were initially
designed for analysing video data – such as Quantity of Motion (QoM, see sec-
tion 3.1) – have been extended for the use with MoCap data. We developed the
modosc library to make methods for handling complex motion data streams and
compute descriptors in real time available in music performance systems [25, 26].
At the time of writing, the library is being extended for the use with IMU and
EMG in addition to MoCap data. The following sections will give an overview of
some of the descriptors most widely used for processing motion and EMG data.

3.1 Motion Features

Fluidity
Inspired by the theoretical work on human motion by Flash and Hogan – which

maintains that trajectories of human limbs can be modelled by the minimum

jerk law [27], Piana et al. [28] defined Fluidity Index as the inverse of the integral
of jerk. Jerk - or “Jolt” - is the third-order derivative of position, i.e. the rate
of change of the acceleration of an object with respect to time. Fluidity Index
has been used with supervised learning algorithms for the purpose of recognising
expressed emotions from full-body movement data [28].

Quantity of Motion
Fenza et al. defined Quantity of Motion (QoM) as the sum of the speeds of

a set of points multiplied by their mass [29]. Glowinski et al. [30] included a
similar measure in their feature set set for the representation of affective gestures,
denoted as “overall motion energy.” This motion feature has also been used for
real-time video analysis [23] and a version for IMU data was also proposed [5].

Contraction Index
Contraction Index is calculated by summing the Euclidean distances of each

point in a group from the group’s centroid [29]. It is an indicator of the overall
contraction or expansion of a group of points and – similarly to Fluidity Index
– it has been used for emotion recognition applications [28].

When using independent inertial sensors, the lack of positional data might
make it difficult to compute Contraction Index. An alternative measure of con-
traction and expansion of body posture using IMU data was proposed by Visi
et al. [5]. This solution uses the Euclidean distance between projected points to
estimate whether the limbs of a person wearing IMUs are pointing in opposite
directions.

Bounding Shapes
Bounding shapes have been used in the analysis of affective gestures [30] as

well as in dance movement asnalysis [31]. Several bounding shapes can be used
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for real-time movement analysis. For example, a bounding box is the rectangular
parallelepiped enclosing a given group of points in a 3d space. Assuming these
points are placed on the body of a performer, the height, width, and depth of the
bounding box can be used as an indicator of the posture of the full body evolves
over time. The minimum polyhedron that encloses a given group of points in
a 3D space is instead called three-dimensional convex hull. The volume of the
convex hull represents the size of the space the body interacts with, and can be
used as a feature for various ML tasks.

Periodic Quantity of Motion
Periodic Quantity of Motion (PQoM) was proposed as a way to measure period-

icity in the movement in relation to the musical rhythm [5], or – in other words –
how much body movement resonates with each rhythmic subdivision (i.e. quarter
note, eighth note, etc.). The first PQoM implementation was designed to extract
periodic motion from optical motion capture data [32]. The PQoM is estimated
by decomposing the motion capture signal into frequency components by using
filter banks [33]. The amplitude of the signal for each frequency component cor-
responds to an estimate of the resonance between the corresponding rhythmic
subdivision and the movement. A script for PQoM estimation was made avail-
able as an extension to version 1.5 of the MoCap Toolbox for Matlab [34], and
a newer, redesigned version of the script has recently been made available [35].

3.2 EMG Features

Signal Amplitude
One of the most important features of EMG signals is the amplitude of the

signal with respect to time. This measure is related to the force exerted while
executing a gesture. Given the complexity and variability of the EMG signal,
reliable amplitude estimation may be challenging. Simply applying a low-pass
filter to the signal to reduce undesired noise may result in the loss of sharp onsets
describing rapid movement and may also introduce latency when processing
the signal in real time. Adopting a nonlinear recursive filter based on Bayesian
estimation [36] significantly reduces the noise while allowing very rapid changes
in the signal, greatly improving the quality of the signal for real-time gestural
interaction.

Mean Absolute Value
Mean Absolute Value (MAV) is one of the most popular features used in EMG

signal analysis [37]. It has been shown that MAV is more useful than other
features for gesture recognition tasks based on supervised learning algorithms
[38]. MAV corresponds to the average of the absolute values of the EMG signal
amplitudes in a given time window. When computed in real-time, a larger time
window returns a smoother signal, whilst a shorter one can be useful to track
sharper onsets in muscular activity.
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Root Mean Square
Root mean square (RMS) is a popular signal processing feature, widely used for

audio analysis. With EMG signals, it has been used together with ML algorithms
for gesture classification tasks [39]. RMS is equals to the square root of the sum
of the squares of the values of the signal in a given time window.

Teager-Kaiser Energy-tracking Operator
The Teager-Kaiser Energy-tracking Operator (TKEO) was first proposed as

a way for estimating energy in speech signals [40]. It has been employed for a
variety of signal processing tasks, including noise suppression [41]. It has been
shown that TKEO considerably improves the performance of onset detection
algorithms also in situations with a high signal-to-noise ratio [42]. The feature
can be be easily calculated from three adjacent samples. For each signal sample,
TKEO is equal to the square of the amplitude minus the product of the precedent
and successive samples.

Zero Crossing Rate
The Zero Crossing Rate (ZCR) corresponds to the number of times the signal

changes sign within a given time window. Another widely used feature in audio
signal processing, it is used to recognise periodic sounds from noisy ones, and
it is employed in speech recognition [43]. Caramiaux et al. [44] use ZCR as one
of the features for the analysis of two different modalities of muscle sensing to
explore the notion of gesture power.

4 Machine Learning Techniques

ML techniques are statistical analysis methods and computational algorithms
that can be used to achieve various tasks by building analytical models (i.e.
“learning”) from example data. Many ML technique involve a training phase
and a testing phase. During the training phase, sample data is used to model
how the system should respond and perform different tasks. During the testing

phase, new input data is fed into the model, which then responds and performs
tasks following decisions based on structures and relationships learnt during the
training phase. As an example, during the training phase a performer using mo-
tion sensors may want to record a gesture and associate it to specific sounds
being produced by a sound synthesis engine. Then during the testing phase, the
performer moves freely while the system follow their movements and infer which
sounds should be played according to the examples given during the training
phase. This allows for flexibility and generalisation, making ML techniques par-
ticularly useful for complex applications that involve many variables and that
may be dependent on factors that are difficult to predict or control, such as
the environments in which systems are deployed, or high variability in how the
system responds to different users. For example, in a musical context one may
want to use a gesture-sound interaction system in different performance spaces,
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which may have different lighting conditions. This may result in undesirable un-
expected behaviours, such as the system responding differently in the concert
hall where a piece is to be performed compared to the space where the piece
has been rehearsed. Moreover, the system may be used by different performers,
whose bodies may differ considerably and thus be tracked differently by vari-
ous types of sensors (see section 2). In such situations designing interactions by
explicitly programming how each sound parameter should behave in response
to incoming sensor data might be too time-consuming, impractical, or result in
interactions that are too shallow and do not afford expressive variations.

There are several standard learning strategies to train a program to exe-
cute specific tasks [45]. Among the most common paradigms, we find Supervised
Learning (SL), Unsupervised Learning (UL), and Reinforcement Learning (RL).
In SL, the training data consists of input paired with desired output. In other
words, training examples are labelled. For example, in a supervised learning sce-
nario motion feature data is paired with the desired sound and passed to the
learning algorithm as training data. Classification and regression are some of
the most common supervised learning tasks In UL, training data is unlabelled.
The goal is learnt from the data itself, by analysing patterns and underlying
structures in the given examples. As an example, a set of unlabelled sounds may
constitute the training set and the task of the unsupervised learning algorithm
may be to group the sounds that have similar features. Common unsupervised
learning tasks include clustering, and dimensionality reduction. In a study by
Visi et al. [46] dimensionality reductions approaches are employed to observe
commonalities and individualities in the music-related movements of different
people miming instrumental performances. The peculiarity of strategies based
on RL is that the algorithm is given feedback in response to the actions this
has executed. The goal of the algorithm is to maximise the positive feedback –
or rewards – they are given by a human (or by another algorithm) that is ob-
serving the outcome of their actions. Training and testing phases here are more
intertwined than in typical supervised and unsupervised strategies, as training
occurs through testing. For example, in a RL scenario, one may task an algo-
rithm to propose some sound synthesis presets, and the user may give positive
or negative feedback in order to obtain a sound that is closer to their liking.
Parameter space exploration is a task associated with this learning strategy. A
gesture-sound mapping exploration method that takes advantage of RL [47] will
be described in section 6.

The following sections will outline how these strategies are employed to per-
form tasks often associated with ML of musical gesture, namely classification,
regression, and temporal modelling.

4.1 Classification

Classification is the task of assigning a category, or class, to an item. In a su-
pervised learning scenario, the training dataset is constituted by items labelled
with the category they belong to. The training dataset is then used to build a
model that will assign labels to new unlabelled items, or instances, that have
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not been classified before. As an example in the context of musical gestures, the
training set may be made of discrete gestures (e.g. tracing a circle in the air,
or a triangle...) where the sensor data and motion features resulting from per-
forming such gestures are paired with corresponding label (circle, triangle, etc.).
These labelled gestures constitute a vocabulary. In performance, the classifier
may be used to track the movements of the performer and recognise when one
of the gesture in the vocabulary is being performed. Successful recognition of
one of the gestures in the vocabulary may be then paired with specific musical
events (e.g. play a kick drum sample when the tracked gesture is classified as
a circle, play a snare sample when the gesture is classified as a triangle, etc.).
In a typical gesture classification scenario, classification occurs after the gesture
is performed, and output of the model is discrete, meaning that a gesture will
always belong to one of the defined classes. Common algorithms for classification
include K-Nearest Neighbors (k-NN), Adaptive Boosting (AdaBoost), Support
Vector Machines (SVM), and Naive Bayes. These and other algorithms are de-
scribed in detail in the manual by Hastie et al. [48]. It is important to note
that different classification algorithms afford different interaction sound param-
eter mapping approaches. For example, by using a probabilistic classifier such
as Naive Bayes, one can use the probability distribution (i.e. the set of likeli-
hoods that the incoming gesture belongs to each of the predefined classes) and
map their values to parameters (e.g. a set of volume levels) instead of using the
class labels to trigger discrete musical events. Finally, classifiers can be used to
recognise static postures if trained – for example – with data describing absolute
or relative position of parts of the body of a performer. Classification of ges-
tures based on how they unfold over time can be done by using various temporal
modelling approaches, which will be described in section 4.3.

4.2 Regression

Regression is the task of estimating the relationship between an independent
variable (or a feature) and a dependent, or outcome, variable. This is done by
building a statistical model that explains how the variables are related, and thus
allows to infer the value of the dependent variable given the independent vari-
able. The model describing this continuous function is built using a set of discrete
samples of independent variables (the input) paired with the corresponding val-
ues of the dependent variables (the output). Building a regression model is a
supervised learning problem, given that to do so one requires labelled data (in-
put paired with corresponding output). Regression is used in several domains for
tasks such as prediction and forecasting. In the context of musical interaction,
regression is an attractive approach as it allows to define complex, continuous
mapping functions between gesture features and sound synthesis parameters.
This can be done by providing examples consisting in sample input data (e.g.
motion or EMG features, see section 3) paired with sound synthesis parameter.

Artificial Neural Networks (ANN) are an efficient way to build linear regres-
sion models. A typical ANN is a network of binary classifiers – called perceptrons
– organised in a number of layers. Perceptrons are also referred to as “neuorns” or
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“nodes.” The first layer of the network (the input layer) has a node for each input
feature. Perceptrons in layers after the input layers produce an output based on
the activation function (the binary classifier, generally a sigmoid function, but
other activation functions may be used) applied to the input they received from
the previous layer. The function includes a set of weights applied to each input
and an additional parameter, the bias. After producing the output of each node
feeding layer after layer (the feed forward process), error is calculated and a
correction is sent back in the network in a process known as back propagation.
After a number of iterations, or epochs, error is progressively reduced. ANNs
are an attractive ML technique when dealing with real-time motion tracking,
as they can handle errors in the incoming data (which may be caused by noisy
sensor signal) relatively well.

The model obtained by training a neural network may then be used to map
incoming motion features to sound synthesis continuously and in real time. Sev-
eral approaches based on regression may be used to map gestural features to
sound synthesis [20]. We have developed the GIMLeT pedagogical toolkit for
Max [49] to provide some practical examples of using linear regression for this
purpose. However, ordinary ANNs do not take into account temporal aspects of
the input data. The next section will look at some of the approaches designed
to analyse and follow the evolution of a gesture in time.

4.3 Temporal Modelling

Gesture unfolds over time, and gestures that may look similar in terms of dis-
placement in space may differ radically in expressivity depending on their tem-
poral evolution. For example, moving an arm outwards very slowly or very fast
following the same trajectory may convey very different expressive intentions.
While certain types of neural networks such as Echo State Networks exhibit
short-term memory and can be trained to operate on temporal aspects of their in-
put [50], longer time spans require different approaches. Dynamic Time Warping
(DTW) [51] is a technique that allows to temporally align incoming time series
(e.g. motion features changing over time) to previously saved gesture templates.
Templates are pre-recorded gesture examples. The DTW algorithm will attempt
to align incoming gesture features to the set of recorded gesture templates, also
referred to as a gesture vocabulary. This way, it is possible to perform various
tasks including assessing to which gesture template the incoming motion data is
closer to. DTW has been used extensively for music applications such as musical
gesture classification [52], to evaluate timing of musical conducting gestures [53],
or as a distance measure to place musical gestures in a feature space [46]. One
major drawback of DTW for musical applications is that, albeit giving access
to how a gesture evolves over time, recognition occurs only after the gesture
has been fully performed, and thus not continuously. To address this limitation,
Bevilacqua et al. [54] proposed a real-time gesture analysis system based on
Hidden Markov Models (HMM). This method allows to continuously recognise a
gesture against stored gesture templates, outputting parameters describing time
progression (i.e. how much of the gesture has already been performed, this is
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known as “gesture following”) and the likelihood of the gesture belonging to one
of the predefined gesture classes. This allows musical interactions such as audio
stretching/compressing in synchronisation with gesture performance. Françoise
et al. [55] extended this approach further, proposing a set of probabilistic ap-
proaches to define motion to sound relationships. These include a hierarchical
structure that allows to switch between the difference gestures in the vocabulary
and follow the temporal progression of the likeliest matching template while per-
forming, and a multimodal approach that models the temporal evolution of both
the motion features and the sound parameters. Caramiaux et al. [56] proposed
further extensions to continuous gesture following by focusing on the online anal-
ysis of meaningful variations between gesture templates and performed gestures.
Their approach uses particle filtering for tracking variations from the recorded
template in real time, allowing to estimate geometric variations such as scaling
(i.e. how much is the gesture bigger/smaller than the template?), rotation an-
gles (i.e. how much is the performed gesture tilted in respect to the template?),
and temporal dynamics (i.e. is the gesture performed faster or slower than the
recoded template?). This gesture variation parameters can then be mapped to
sound synthesis parameters. For example, the authors describe a study where an
increase in scaling corresponds to louder volume, temporal dynamics are mapped
to playback speed of samples, and rotation angles to high-pass filtering [56, p.
19].

5 Sound Synthesis and Gesture Mapping

Modern sound synthesis techniques are often characterised by a high number of
parameters one can manipulate in order to make different sounds. Whilst these
afford vast synthesis possibilities, exploring the resulting extensive parameter
spaces may be a challenging task, which can be particularly difficult to accom-
plish by manipulating every parameter by hand.

The choice of synthesis algorithm, therefore, can be one where individual
synthesis parameters may be difficult to manually parametrise by hand. Instead,
we will exploit the “mapping by demonstration” paradigm where the ML algo-
rithm will create a model whereby performance input is translated to synthesis
output. In this regard, a difficult to programme synthesis method like Frequency
Modulation, could be a good candidate.

Here we present two approaches from our work to demonstrate how regression
can work with different levels of complexity of sound synthesis. We show a simple
granular synthesiser, and a more sophisticated synthesis using content-based
concatenative synthesis [57].

5.1 Granular Synthesis and Sound Tracing

We created a basic granular synthesis module using the in-built capabilities of a
sample buffer reader in Max [58], groove~. The implementation is a time domain
sample-based synthesiser where an audio buffer contains the sample being played,
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and pitch transposition and playback speed are decoupled. This is coupled with
subtractive synthesis with a classic resonant low-pass filter. There are six control
parameters:

– playback start time
– playback duration
– playback speed
– pitch shift
– filter cutoff frequency
– filter resonance.

A version of this synthesiser is available as part of the GIMLeT pedagogical
toolkit for Max [49]. This provides an example of a synthesiser where the sound
authoring parameters are human readable and where parametrisation could be
done by hand. The challenge comes in creating sounds that dynamically re-
spond to incoming gesture without hardwiring gestural features to synthesis
parameters in a traditional mapping exercise. Here we use sound tracing [59]
as a method where a sound is given as a stimulus to create evoked gestural
response. By gesticulating to a sound that evolves in time, we author gesture
that then becomes training data for the regression algorithm in a “mapping-
by-demonstration” workflow. In order to author time varying sound using this
synthesiser, we create a system of “anchor points”, salient points in the timbral
evolution of the sound that are practical for sound synthesis parametrisation,
and useful in pose-based gesture training [20]. The synthesiser is controlled by
our break-point envelope-based playback system and enables the user to design
sounds that transition between four fixed anchor points (start, two intermediate
points, and end) that represent fixed synthesis parameters. The envelope inter-
polates between these fixed points. The temporal evolution of sound is captured
as different states in the breakpoint editor whose envelopes run during playback,
feeding both synthesiser and the ML algorithm. Any of the synthesis parameters
can be assigned to break-point envelopes to be controlled during playback.

These sound trajectories are then reproduced during the gesture design and
model training phases of our workflow. In performance a model maps sensor
data to synthesis parameters, allowing users to reproduce the designed sounds
or explore sonic space around the existing sounds.

5.2 Corpus-based Synthesis and Feature Mapping

Corpus-based concatenative synthesis (CBCS) is a compelling means to create
new sonic timbres based on navigating a timbral feature space. In its use of
atomic source units that are analysed, we can think of CBCS as an extension of
granular synthesis that harnesses the power of music information retrieval and
the timbral descriptors they generate. The actual sound to be played is specified
by a target and features associated with that target.

A sound file is imported into the synthesiser, and it is automatically seg-
mented into units, determined by an onset segmentation algorithm. A vector of
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19 auditory features, shown in Table 5.2, are analysed for each unit. Playback
typically takes place as a navigation in the audio feature space. A set of de-
sired features is given to the synthesiser, and a k-nearest neighbours algorithm
retrieves the closest matching unit to a given set of auditory features. This syn-
thesis method, therefore, is not one where the user programmes sound by setting
synthesis parameters in a deterministic way. Schwarz typically uses CataRT[60]
controlled through a 2D GUI in live performance, which enables control of only
two target audio features at a time.

Here, the full vector of all auditory features are associated with with the
sensor feature vectors to train the neural network, and roughly represent a high-
dimensional timbral similarity space. We refer to this as multidimensional feature

mapping, that is to say, that a gesture-sound mapping is created in the feature
domain.

Table 1. Audio feature vector for corpus based concatenative synthesis

Sound Features
Duration

Frequency µ

Frequency σ

Energy µ

Energy σ

Periodicity µ

Periodicity σ

AC1 µ

AC1 σ

Loudness µ

Loudness σ

Centroid µ

Centroid σ

Spread µ

Spread σ

Skewness µ

Skewness σ

Kurtosis µ

Kurtosis σ

The high- dimensionality of gesture and sound feature spaces raises challenges
that ML techniques have helped to tackle. However, this complexity also offers
opportunities for experimentation. This led us to develop an extension to the
IML paradigm that allows to explore the vast space of possible gesture-sound
mappings with the help of an artificial agent and RL.
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Atau Tanaka | a.tanaka@gold.ac.uk | Goldsmiths, University of London, UK 
Author's accepted manuscript, to appear as a chapter in "Handbook of Artificial Intelligence for Music: Foundations, Advanced 
Approaches, and Developments for Creativity", edited by E. R. Miranda. Cham: Springer Nature, 2021.



Interactive Machine Learning of Musical Gesture 15

6 Reinforcement Learning

RL is an area of ML in which algorithms in the form of artificial agents are
programmed to take actions in an environment defined by a set of parameters.
Their goal is to maximise the positive feedback – or rewards – they are given
by a human (or by another algorithm) observing the outcome of their actions.
Deep RL approaches – such as the Deep TAMER algorithm – leverage the power
of deep neural networks and human-provided feedback to train agents able to
perform complex tasks [61]. Scurto et al. [62] implemented the Deep TAMER
algorithm to design artificial agents that allow to interactively explore the pa-
rameter spaces of software synthesisers.

We have developed a system that makes use of Deep RL to explore different
mappings between motion tracking and a sound synthesis engine [47]. The user
can give positive or negative feedback to the agent about the proposed mapping
while playing with a gestural interface, and try new mappings on the fly. The de-
sign approach adopted is inspired by the ideas established by the IML paradigm
(which we schematised in Figure 1), as well as by the use of artificial agents in
computer music for exploring complex parameter spaces [63–65]. We call this
interaction design approach Assisted Interactive Machine Learning (AIML).

6.1 RL for Exploring Gesture-sound Mappings: Assisted Interactive
Machine Learning

An AIML system is designed to interactively explore the motion-sound mappings
proposed by an artificial agent following the feedback given by the performer.
This iterative collaboration can be summarised in four main steps:

1. Sound design: the user authors a number of sounds by editing a set of salient
synthesis parameters;

2. Agent exploration: the agent proposes a new mapping between the signals
of the input device and the synthesis parameters based on previous feedback
given by the user;

3. Play: the user plays with the synthesiser using the input device and the
mapping proposed by the agent;

4. Human feedback: the user gives feedback to the agent.

In step 2, if no feedback was previously given the agent starts with a random
mapping. Steps 3 and 4 are repeated until the user has found as many interesting
motion-sound mappings as they like. The following subsections will describe the
system architecture and a typical workflow.

It is worth noting that, differently from most IML applications for gestural
interaction, there is not a gesture design step during which the performer records
some sample sensor data for training the system. This is perhaps one of the
most obvious differences between the IML and AIML paradigms. In an AIML
workflow, the sample sensor data used for training the model is provided by the
artificial agent, whereas the user gives feedback to the agent interactively while
playing the resulting gesture-sound mappings.
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6.2 AIML System Architecture

Human feedback

Motion 
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Sound
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Human

Reinforcement learning 
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Environment

Proposed 
motion 
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Sound design

Movement

Fig. 2. Architecture of an Assisted Interactive Machine Learning system.

The architecture of the system is schematised in Figure 2. Motion features
are stored in a vector and sent to a regression model created using a neural net-
work. This was implemented in Max using the rapidmax object [66], an external
built using RapidLib [67, 68], a set of software libraries for IML applications
in the style of Wekinator [69]. These features also represent the dimensions of
the environment in which the artificial agent operates. By exploring this feature
space following the user’s feedback, the agent proposes a set of motion features
to be paired with the synthesis parameters defined by the user during the sound
design step. This becomes the dataset used to train the neural network. The
resulting regression model maps the incoming sensor data to sound synthesis
parameters.

6.3 AIML Workflow

The four main steps of the interactive collaboration between the human per-
former and the artificial agent are schematised in Figure 3.

1. Sound design In this first step, the user defines a number of sounds by ma-
nipulating a set of synthesis parameters. This process may differ depending on
the synthesiser chosen and which synthesis parameters are exposed to the user
in this step. In the first version of the system using the sample-based synthesiser
described in section 5.1, the sounds are defined by manipulating six parameters
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Fig. 3. The prototypical Assisted Interactive Machine Learning workflow.

(playback speed, pitch shift, start time, duration of the sample selection, filter
cutoff frequency and resonance). Here, the user defines the parameters of four
sounds that will be used to train a neural network in step 2 and perform regres-
sion in step 3. The sounds designed in the sound design step will thus act as
timbral anchor points that define a space for interpolation and extrapolation of
new sounds.

2. Agent exploration The dimensions of the environment explored by the
agent are defined by the motion features extracted from the raw sensor data for
each of the sound presets. Thus, at the end of the exploration step, the agent
returns a vector with a set of input features for each of the sound synthesis
parameters sets defined in the sound design step. This means that in the case of
the version of the system using a 2D accelerometer, the agent will return four
2D vectors. These will be automatically paired with the synthesis parameters to
train a neural network and create a regression model, which will be used in the
following step to map live incoming sensor data to sound synthesis.

3. Play In this step, the user is free to play with and explore the resulting
gesture-sound mapping for however long they like. Given that the regression
models allow both interpolation and extrapolation of the input sound synthesis
data, this step also allows to explore the timbral possibilities of the synthesiser
while playing the mapping.

4. Human feedback After playing with the mapping, the user may give feed-
back to the artificial agent through a purposely designed interface. We adopted
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the concepts of guiding feedback and zone feedback implemented in the agent
designed by Scurto et al. [62]. Guiding feedback is a binary evaluation of the
actions performed by the agent, or the direction of its exploration of the feature
space. Zone feedback is instead an evaluation of the area of the feature space
the agent is currently exploring. For example, a negative guiding feedback would
change the direction of the agent’s trajectory in the feature space, whereas a neg-
ative zone feedback would immediately transfer the agent to a different region
of the space.

In our system, the user can give positive or negative guiding feedback to the
agent about the proposed mapping. This feedback guides the direction of the next
explorations of the feature space, and thus affects the next mappings proposed by
the agent. In addition, the user can tell the agent to move to a different area of the
feature space by means of a negative zone feedback. This will likely result in a new
mapping that is considerably different from the previous one. In practice, this
could be useful for trying something new once one is satisfied with the mappings
proposed by the agent after a few guiding feedback iterations. In fact, whereas
negative guiding feedback results in adjustments to the mappings currently being
proposed by the agent, negative zone feedback triggers the exploration of a new
area of the feature space, thereby exploring new mapping possibilities. Finally,
users can save mappings, which can be retrieved later for performance or as
material to be further refined using other interaction design approaches.

7 In Practice: IML Techniques in Musical Pieces

The sections that follow will describe how the techniques we outlined so far
were employed by the authors for the development of their own musical pieces.
The four pieces we selected showcase how these methods may be deployed to
aid certain expressive intentions. Through their use in artistic practice, some of
the creative affordances of IML paradigms become clearer, showing how certain
creative processes may be facilitated and exposing strength and limitations of
specific techniques.

7.1 Wais (Tanaka)

Wais (2019) is an homage to Michel Waisvisz, his work at the studio STEIM
in Amsterdam and his performances on the instrument, The Hands. On one
arm a short recording of a Waisvisz performance is articulated. On the other,
an electronic music track, Delull by Tanaka. These two sources are granulated
and placed in counterpoint. Two neural networks create independent regression
models associating static posture and sound grain for each source. Once in “test”
mode, these models take dynamic gesture, deconstructing the two prior works
into a single improvisation.

Gesture is captured by one Myo sensor armband [70] on each forearm, pro-
viding 8 EMG channels, IMU quaternions, and combinatorial features resulting
in 19 total muscle tension and movement features each from the left and right
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arms. An instance of the synthesiser described in section 5.1 is associated with
each sensor armband, allowing an independent sound buffer to be articulated by
each arm.

The gesture input and sound synthesis output are associated by means of
a neural network regression algorithm (see section 4.2), one for each arm. The
performance consists of three sections, first to audition the unaltered source
samples, second to train the neural network, and third to explore the trained
model. At the beginning of the performance, the regression models are empty.
The source sounds are played from the beginning, going up to 5 minutes for
Tanaka’s recording and 19 seconds looped of Waisvisz’s recording. The overall
summed RMS muscle tension for each arm initially modulates the amplitude of
each recording, allowing the two musical voices to be articulated in a direct, gross
manner. This section familiarises the listener with the original source materials.

In section two, a series of four granular regions and filter settings for each
voice are associated with four static postures for each arm, with the gesture input
recorded to establish a training set. This is done in performance as a sequence of
events to set the synths to each pre-composed sound and prompt the performer
to adopt a pose for each. The overall amplitude continues to be modulated by
the summed muscle RMS. So, while each posture for the training set is static, the
music continues to be articulated in a continuous manner through muscle tension.
This creates a continuation of the first section where four segments of each voice
are chosen as a way to zoom into segments of the original recordings. The eight
segments are called up in an alternating for each arm through a rhythmic timing
aided by a foot pedal push button to advancing and prompting the performer
to each subsequent pose. After the training set of example poses and associated
target sounds are recorded, the two neural networks are trained to produce a
regression model.

The regression model is put into test mode for the third section of the piece
and all three components of the work – 38 total dimensions of gesture, the
two neural networks, and 12 total dimensions of sound synthesis output – come
to life in dynamic interplay. The performer explores the gesture-sound space
through continuous movement. He may approach or go through the poses from
the training to see if the precomposed segments are recalled. He may explore
multimodal decomposition and recombining of the source poses, perhaps striking
a posture from one pose in space to recall IMU data for that pose, combined
with muscle tension from another pose. This exploration is fluid, comprised of
continuous gesture that dynamically goes in between and beyond the input points
from the training set. The result is a lively exchange of the two musical voices,
with the granular synthesis and filters constantly shifting in ways unlikely to be
possible with manual parameter manipulation or direct mapping.

7.2 11 degrees of Dependence (Visi)

11 Degrees of Dependence (2016) is a composition for saxophone, electric guitar,
wearable sensors, and live electronics that makes use of ML for continuously
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mapping the movements of the musicians to sound synthesis based on physical
models and granular synthesis.

The piece explores the relationship between the performers and their instru-
ments, focusing on the constraints that instrumental practice imposes on body
movement and a topological interpretation of the musician’s kinesphere [71]. The
score includes symbols to notate movements, designed to be easily interpreted
by musicians familiar with standard notation.

The piece is a duet for alto or soprano sax and electric guitar tuned in Drop
C (open strings tuned CGCFAD from low to high). The sax player and the gui-
tarist each wear two Myo armbands to control the physical model whereas the
guitarist wears the same devices to control granular synthesis and an electroa-
coustic resonator placed on the guitar headstock. Parameter mapping is done
using a supervised learning workflow based on SVMs. The data from the lateral
(pitch) and longitudinal (roll) axes of the magnetometer are used as input to
train the ML model. Four ‘postures’ are then defined for both musicians. In the
case of the sax player, these are:

– a ‘default’ performance position (named ‘Rest’) with arms comfortably by
the side of the chest,

– gently leaning back, raising the saxophone with the elbows slightly open
(named ‘Open’),

– leaning to the left with the right elbow slightly pointing outwards (named
‘Left’),

– leaning to the right with the left elbow slightly pointing outwards (named
‘Right’).

During the training phase, each posture is coupled with a set of synthesis
parameters of the flute physical model. The Rest posture is paired with a clean
sound with a clear fundamental frequency, the Open posture with a louder sound
rich of breath noise, the Left posture adds overtones, and the right posture with a
flutter tongued ‘frullato’ sound. In performance (testing phase, in ML terms), the
synthesis parameters are continuously interpolated using the output likelihoods
of the classifier as interpolation factors. This synthesised wind instrument sounds
are designed to blend with the saxophone sound to generate a timbre with both
familiar and uncanny qualities. The pitch played by the flute model is a C1, which
is also the tonic of the piece. The amount of noise fed into the physical model
(or breath pressure) is controlled by the sum of the EMG MAV values of both
arms. This implies that the amount of synthesised sound is constrained by the
movement of the fingers operating the saxophone keys. Notes that require more
tone holes to be closed – such as low notes for example – cause more muscular
activity and thus louder sounds from the physical model. This design choice
adds a component of interdependent, semi-conscious control to the performance
creating a tighter coupling between the sounds of the saxophone and those of
the flute model.

11 Degrees of Dependence is structured in 3 parts, each of which contains
scored themes at the beginning and the end a middle improvised section. The
full score of the alto saxophone part can be found in appendix of [72]. The score
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adopts conventional notation along with some custom symbols (printed in red)
used to notate movement. While the symbols indicate at which point in time
the posture should be reached, the red lines show how the transition between
the different postures should be articulated. These lines resemble other lines
commonly found in conventional music notation. A straight line between two
symbols means that the performer should start from the posture represented by
the first symbol and progressively move towards the posture represented by the
second symbol. The movement resulting from the transition between the pos-
tures should end in correspondence with the second symbol, thus following the
rhythmic subdivision indicated in the staff. This is similar to a glissando, also
notated using straight lines between note heads. A curved line between the pos-
ture symbols works instead analogously to a legato, meaning that the indicated
posture quickly tied with the following one. The score is where affordances and
constraints of the agencies involved in the piece coalesce: each posture is repre-
sented by a symbol and corresponds to a class of the ML classifier, body move-
ments occur in-between postures, causing sound synthesis to move in-between
predefined parameter sets. At the centre of these interdependent agencies we
find the bodies of the musicians, and their embodied relationships with their
instruments.

7.3 Delearning (Tanaka)

Delearning (2019) takes as its source a work by Tanaka for chamber orchestra,
DSCP, as sound corpus for analysis and subsequent neural network regression.
Feature extraction of arm poses are associated with audio metadata and used to
train an artificial neural network. The algorithm is then put into performance
mode allowing the performer to navigate a multidimensional timbre space with
musical gesture.

This piece puts in practice the technique we describe in Zbyszyński et al. [21],
where multimodal EMG and IMU sensing is used in conjunction with corpus
based concatenative sound synthesis (CBCS) to map 19 dimensions of incoming
gesture features by a regression model to 19 dimensions of audio descriptors.

The nineteen gesture features are taken from the right forearm and are: IMU
quaternions (4 dimensions), angular velocity (4 dimensions), 8 channels of Bayes
filtered EMG, total summed EMG (1 dimension), and a separation of all EMG
channels on the perimeter of the forearm to horizontal and vertical tension (2
dimensions).

The nineteen target audio descriptors are grain duration followed by the
means and standard deviations of frequency; energy; periodicity; autocorrelation
coefficient; loudness; spectral centroid, spread, skew and kurtosis.

The gesture input feature space is mapped to the target audio feature space
by means of a neural network that creates a regression model associating gesture
as performed and sound synthesis output.

The source audio is a recording of an 18 minute piece for chamber orchestra
of mixed forces. The work was chosen as it contains a diverse range of timbres
and dynamics all while being musically coherent. Before the performance, the
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recording is analysed to generate the audio descriptors. The recording is read
from beginning to end and is segmented by transient onset detection into grains.
This generates 21,000 grains over the course of the duration of the recording,
making the average grain 50ms in duration.

The composition consists of five points in the original piece that have been
selected to be associated with performance postures. The EMG and IMU sensors
on the right arm feed the neural network, while EMG amplitude from the left
arm modulated overall synthesiser amplitude and IMU quaternions modulate,
at different points in the composition, filtering and spatialisation.

The performance begins with the analysed recording, but with an empty
regression model. The first grain is heard, and the performer adopts a posture to
associate with it, and records that as training data into the neural network. This
continues for the two subsequent grains, at which point the training set consists
of gesture features of the three poses associated with the audio descriptors of
the three grains. The neural network is trained, and it then put into test mode
and the performer explores this gesture-timbre space through fluid, dynamic
gesture. The regression model takes gesture feature input to report a set of audio
descriptors to the synthesiser. The synthesiser applies a K-nearest neighbour
algorithm to find a grain in the corpus that has the closest Euclidean distance
to the look up features.

In the next section of the piece, the neural network is put back into training
mode, and a fourth grain is introduced and associated with a fourth posture.
This pose is recorded as an extension to the existing training set, putting in
practice the IML paradigm of providing more examples. The neural network is
retrained on this enhanced data set and put in performance mode for further
free exploration by the performer.

This is repeated with the fifth and final grain to extend the regression model
one last time to model the data representing 5 poses associated with five audio
grains. This creates a musical structure where the gesture-timbre space becomes
richer and more densely populated through the development of the piece.

7.4 “You Have a New Memory” (Visi)

“You Have a New Memory” (2020) [73] makes use of the AIML interaction
paradigm (see section 6) to navigate a vast corpus of audio material harvested
from the messaging applications, videos, and audio journals recorded on the au-
thor’s mobile phone. This corpus of sonic memories is then organised using audio
descriptors and navigated with the aid of an artificial agent and RL. Feedback
to the agent is given through a remote control, while embodied interaction with
the corpus is enabled by a Myo armband.

Sonic interaction is implemented using CBCS (see section 5.2). The approach
is further refined by adopting the method based on self-organising maps proposed
by Margraf [74], which helps handling the sparseness of heterogenous audio cor-
pora.

In performance, the assisted exploration of sonic memories involves a embod-
ied exploration of the corpus the entails both a search of musical motives and
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timbres to develop gestural musical phrases, as well as the intimate, personal
exploration of the performer’s recent past through fragments of sonic memo-
ries emerging from the corpus following the interaction with the agent. The
juxtaposition of sounds that are associated with memories from different pe-
riods may guide the performer towards an unexpected introspective listening
that co-inhabits the performance together with a more abstract, sonic object-
oriented reduced listening [14]. The shifting between these modalities of listening
influences the feedback given to the agent, which in return alters the way the
performer interacts with the sonic memories stored in the corpus.

The title of the piece – “You Have a New Memory” – refers to the notifications
that a popular photo library application occasionally send to mobile devices to
prompt their users to check an algorithmically generated photo gallery that
collects images and videos related to a particular event or series of events in
their lives. These collections are ostensibly compiled by algorithms that extract
and analyse image features, metadata (e.g. geotags), and attempt to identify the
people portrayed on the photos [75].

The piece aims at dealing with the feelings of anxiety associated with the
awareness that fragments of one’s life are constantly turned (consciously or not)
into data that is analysed and processed by unattended algorithms, whose inner
workings and purposes are often opaque. The piece then is also an attempt at ac-
tively employing similar algorithms as a means of introspection and exploration.
Rather than passively receiving the output of ML algorithms dictating when
and how one’s memories are forming, here the algorithms are used actively, as
an empowering tool for exploring the complexity outlined by the overwhelming
amount of data about ourselves that we constantly produce.

8 Conclusion

The purpose of this chapter was to provide an overview of the solutions, chal-
lenges, needs, and implications of employing IML techniques for analysing and
designing musical gestures. The research field is still rapidly developing, and
the topics we touched in the previous sections may give an idea of the inter-
disciplinary effort required for advancing research further. Advances in the field
require an interdisciplinary perspective as well as a methodology encompassing
basic research enquiry, the development of tools, their deployment in artistic
practice and an analysis of the impact such techniques have on one’s creative
process. Learning more about the use of ML in music has manifold implications,
stretching way beyond the music domain. As ML technologies are used to man-
age more and more aspects of everyday life, working along the fuzzy edges of
artistic practice – where tasks are often not defined in univocal terms and prob-
lems are, and need to be left, open to creative solutions – becomes a laboratory
in which we understand how to claim and negotiate human agency over data sys-
tems and algorithms. Understanding ML as a tool for navigating complexity that
can aid musicians’ creative practice may contribute to the advancement of these
techniques as well as to their demystification and broader adoption by artists,
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researchers as well as educators, thereby becoming sources of empowerment and
inspiration.
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